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Abstract
Recent years have emerged a surge of interest in spiking neural networks (SNNs). The performance
of SNNs hinges not only on searching apposite architectures and connection weights, similar to
conventional artificial neural networks, but also on the meticulous configuration of their intrinsic
structures. However, there has been a dearth of comprehensive studies examining the impact of
intrinsic structures; thus developers often feel challenging to apply a standardized configuration of
SNNs across diverse datasets or tasks. This work delves deep into the intrinsic structures of SNNs.
Initially, we draw two key conclusions: (1) the membrane time hyper-parameter is intimately linked
to the eigenvalues of the integration operation, dictating the functional topology of spiking dynamics;
(2) various hyper-parameters of the firing-reset mechanism govern the overall firing capacity of
an SNN, mitigating the injection ratio or sampling density of input data. These findings elucidate
why the efficacy of SNNs hinges heavily on the configuration of intrinsic structures and lead to a
recommendation that enhancing the adaptability of these structures contributes to improving the
overall performance and applicability of SNNs.

Inspired by this recognition, we propose two feasible approaches to enhance SNN learning,
involving developing self-connection architectures and stochastic spiking neurons to augment the
adaptability of the integration operation and firing-reset mechanism, respectively. We theoretically
prove that (1) both methods promote the expressive property for universal approximation, (2) the
incorporation of self-connection architectures fosters ample solutions and structural stability for
SNNs approximating adaptive dynamical systems, (3) the stochastic spiking neurons maintain gener-
alization bounds with an exponential reduction in Rademacher complexity. Empirical experiments
conducted on various real-world datasets affirm the effectiveness of our proposed methods.
Keywords: Spiking Neural Network, Intrinsic Structures, Integration Operation, Self-connection
Architecture, Firing-Reset Mechanism, Stochastic Excitation, Rademacher Complexity
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1. Introduction

Spiking neural network (SNN) has garnered increasing attention as a bio-inspired neural network
model due to its great potential in neuromorphic computing and sparse computation (Maass, 1997;
Maass and Bishop, 2001). The SNN building emulates the information communication mechanism
among biological neurons, wherein spiking neurons communicate with each other through sequences
of spikes. Within a neuron, a spiking neuron replicates the process of converting information between
membrane potentials and spikes, employing the integration-and-fire paradigm.

According to the framework of neural network learning, the performance of SNNs hinges not only
on the determination of network architectures and the training of connection weights, akin to artificial
neural networks (ANNs) with conventional McCulloch-Pitts (MP) neurons (McCulloch and Pitts,
1943), but also on the specific configurations of intrinsic structures. These encompass the spiking
computations within the integration-and-fire paradigm and their corresponding hyper-parameters,
as depicted in Figure 1. Regrettably, there has been a dearth of analyzable studies on exploring the
impact of these intrinsic structures.

A consensus regarding the optimal configuration for deploying SNNs across various datasets
or tasks remains elusive. Moreover, there is currently no systematic guidance available on the
choice between leaky and general formations or on how to fine-tune the associated hyper-parameters.
Existing SNNs often adhere to biologically plausible knowledge from neuroscience when configuring
these intrinsic structures, occasionally making minor adjustments to hyper-parameters (Carlson et al.,
2014). Consequently, developers often grapple with the challenge of discerning which elements of
the intrinsic structures are indispensable and how best to adjust the corresponding hyper-parameters
for various learning tasks.

In this paper, we embark on a theoretical exploration of the intrinsic structures inherent to SNNs.
Initially, we unveil two pivotal components: the integration operation and the firing-reset mechanism,
by deconstructing the expressivity of SNNs. Moreover, we draw two key conclusions:

• The membrane time hyper-parameter intricately correlates with the eigenvalue of the integration
operation, ultimately dictating the functional topology of spiking dynamics. An ill-suited
configuration can impede proper SNN learning, elevating the risk of structural instability.

• Diverse hyper-parameters within the firing-reset mechanism exert influence over the firing
capacity of SNNs, irrespective of the injection ratio or sampling density of input data. The
improper setting can obstruct the generation of spiking patterns, manifesting as either an excess
of inhibited or even non-responsive neurons or an elevated excitation frequency.

These findings challenge the conventional manners of pre-fixing intrinsic structures prior to learning;
instead, we advocate for adaptive settings that respond to the specific data or environmental context.
This manner also coincides with the typical paradigm of artificial neural network learning, as show
in Figure 1, which consists of the neural network model and the learning algorithm. Thus, adopting
such adaptable intrinsic structures of neural network models stands to significantly enhance the
performance and applicability of SNNs.

Inspired by this recognition, we propose two methods for improving SNN learning, that is,
adding the self-connection architecture and incorporating a stochastic spiking neuron model, which
correspond to the modifications of the network architecture and spiking neuron model in Figure 1,
respectively. Equipped with apposite learning algorithms, the proposed methods explicitly bridge the
gap between expressivity and generalization of SNN learning.
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Figure 1: Overview of this work.

The starting point of adding self-connection architectures is from an investigation that have char-
acterized typical SNNs as bifurcation dynamical systems (Zhang et al., 2021). These investigations
have shed light on the potential issues of structural instability arising from simple configurations of
SNNs. In contrast, SNNs enhanced with self-connection architectures evolve into adaptive dynamical
systems (Zhang and Zhou, 2022), as exemplified in Figure 5. This insight motivates our exploration
of the potential benefits of self-connection architectures, specifically in enhancing the adaptivity of
integration operations. Here, we theoretically prove that SNNs with self-connection architectures
serve as universal approximators for adaptive Hamiltonian systems and exhibit heightened structural
stability as specified by the lower and upper bounds of the maximum number of limit cycles.

The key idea of incorporating the stochastic spiking neuron model is to introduce a level of
stochasticity to the firing-reset mechanism. This manner ensures that a spiking neuron maintains a
certain excitation probability of being activated even though the integrated membrane potential falls
short of the firing threshold. Besides, the inclusion of this probabilistic element engenders an unbiased
and non-asymptotic estimator for gradients, enabling gradient calculations. We theoretically prove
that the SNN equipped with stochastic spiking neurons possesses not only the expressive attributes
of universal approximation along with approximation complexity advantages over conventional
ANNs and SNNs, but also the explicit generalization bounds in which the excitation probability
exponentially reduces the Rademacher complexity, comparative to previous studies on ANNs.

Our main contributions are summarized as follows:

• Theoretical Investigation of Intrinsic Structures. We conduct a thorough theoretical in-
vestigation into two crucial types of intrinsic structures: the integration operation and the
firing-reset mechanism. This analysis leads to two significant conclusions: (1) The membrane
time hyper-parameter exhibits a close relationship with the eigenvalues of the integration
operation in Subsection 3.1. (2) The firing-reset mechanism fundamentally determines the
firing capacity of SNNs in Subsection 3.2.
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• Advocacy for Adding Self-connection Architectures. We advocate adding self-connection
architecture to improve the adaptivity of the integration operation. This addition has three
noteworthy outcomes: (1) The SNN with self-connection architectures has the property of
universal approximation in Theorem 2. (2) The self-connection architecture promotes an
abundance of solutions, ranging from polynomial to exponential complexities, for SNNs
approximating adaptive Hamiltonian systems in Theorem 3. (3) Adding self-connection
architectures contributes to strengthening the structural stability of SNNs in Subsection 4.3.

• Introduction of Stochastic Spiking Neuron Model. We propose the stochastic spiking neuron
model by probabilizing the firing-reset mechanism. We have four significant findings: (1)
The stochastic spiking neuron model induces an unbiased and non-asymptotic estimator for
gradients; thus, SNNs equipped with stochastic spiking neurons allow gradient calculations
in Subsection 5.1. (2) The SNN equipped with stochastic spiking neurons has the universal
approximation property in Theorem 9. (3) The SNN equipped with stochastic spiking neurons
exhibits the approximation complexity advantages, over conventional ANNs and SNNs in
Theorem 10. (4) We present the first explicit generalization bounds for SNNs equipped
with stochastic spiking neurons, where the excitation probability exponentially reduces the
Rademacher complexity, offering a notable performance compared to previous studies on
ANNs in Theorem 11 and Theorem 12.

• Experimental Validation. The experiments conducted on static and neuromorphic datasets
demonstrate the effectiveness of our proposed methods in Section 6.

The rest of this paper is organized as follows. Section 2 introduces some useful notations,
terminologies, and related works. Section 3 investigates the expressivity and intrinsic structures of
SNNs. Section 4 and Section 5 propose the improved methods by modifying the network architecture
and spiking neuron model, respectively. Section 6 conducts numerical experiments. Section 7
concludes this work with prospects.

2. Preliminaries

This section introduces some useful notations, terminologies, and related works for SNN learning.

2.1 Notations

Let [N ] = {1, 2, . . . , N} be an integer set for N ∈ N+, and | · |# denotes the number of elements in a
collection, e.g., |[N ]|# = N . The symbol x ≼ 0 means that every element xi ≤ 0 for any i ∈ [|x|#].
Let the sphere S(r) and globe B(r) be S(r) = {x | ∥x∥2 = r} and B(r) = {x | ∥x∥2 ≤ r} for
any r ∈ R, respectively. Given two functions g, h : N+ → R, we denote by h = Θ(g) if there exist
positive constants c1, c2, and n0 such that c1g(n) ≤ h(n) ≤ c2g(n) for every n ≥ n0; h = O(g) if
there exist positive constants c and n0 such that h(n) ≤ cg(n) for every n ≥ n0; h = Ω(g) if there
exist positive constants c and n0 such that h(n) ≥ cg(n) for every n ≥ n0.

2.2 Spiking Computation

The computational process of SNNs complies with an integration-and-firing paradigm, which
comprises an integration operation and a firing-reset mechanism as follows.
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Figure 2: Illustrations for the working flow of SNNs.

Integration Operation. The integration operation of SNNs is usually formulated as some first-order
differential equations. The leaky integration-and-firing (LIF) model is common type of spiking
equations, of which the general form is as follows

LIF : τm
du(t)

dt
= −u(t) + τrfagg(I(t)) , (1)

where u(t) = (u1(t), . . . , uN (t))⊤ indicates the membrane potential vector of N spiking neurons at
timestamp t, I(t) = (I1(t), . . . , IM (t))⊤ denotes the M -dimensional input signals, τm and τr are
positive-valued hyper-parameters with respect to membrane time and membrane resistance, respec-
tively. Here, fagg is an aggregation function, usually with the following form fagg(I(t)) = W I(t),
where W is the learnable connection matrix. Sometimes, we should normalize the aggregated
distributions using some techniques such as batch normalization, which not only modifies the feature
space by re-centering but also avoids larger information flows and gradient explosion by re-scaling.
For the simplicity of mathematical formation, we omit the normalization techniques throughout this
paper except for experiments.

Firing-Reset Mechanism. The spiking neuron model employs the typical threshold rule, that is,
neuron k (k ∈ [N ]) fires spikes sk(t) at time t if and only if uk(t) ≥ ufiring where ufiring indicates
the firing threshold. We formulate this procedure using a spike excitation function

fe : R→ R , where sk(t) = fe(uk(t))
def
=

⌊
uk(t)

ufiring

⌋
. (2)

After firing, the membrane potential is instantaneously reset to a lower value ureset, that is, reset
voltage. Formally, one has u(t) = (1− s(t)) · u(t) + s(t) · ureset. Here, we do not consider absolute
refractory periods (Hunsberger and Eliasmith, 2015) or refractory kernels (Dumont et al., 2017).

Neural Encoding. Input signals of SNNs are formal of binary strings or equally spike sequences,
i.e., Ij(t) ∈ {0, 1} for j ∈ [M ]. In cases where non-spiking data is provided, it needs to be converted
into spike format during pre-processing. This conversion technique is commonly referred to as
neural encoding. Neural encoding methods can be broadly categorized into two main groups: timing-
based encoding and rate-based encoding. All specialized encoding schemes can be separated into
one of these two by answering whether the exact timing and order of spikes are crucial for the
information to be submitted (Auge et al., 2021). It is evident that there is an invertible transformation
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between the rate-based and timing-based encoding techniques, which is theoretically investigated
in Subsection 5.2. In practice, the rate-based encoding has become the simplest and most popular
encoding scheme in SNNs, and researchers usually employ rate-based data encoded by a Poisson
distribution (Susemihl et al., 2013) or recorded by a Dynamic Vision Sensor (Quiroga et al., 2005).

Training Approaches. The last two decades have witnessed the increasing prominence of SNNs in
machine learning and artificial intelligence research, leading to a proliferation of efficient software
packages for their training and deployment. The most popular approaches for SNNs training
originated from the spike response model scheme (Gerstner, 1995), based on which Eq. (1) has the
following solution with the boundary condition ureset = 0

uk(t) =

∫ t

t′
exp

(
− t′′ − t′

τm

)
∆(t′′) dt′′ with ∆(t′′) =

τr
τm

∑
j∈[M ]

WkjIj(t
′′) , (3)

where t′ denotes the last firing timestamp t′ = max{t′′ | uk(t′′) = ufiring, t
′′ < t}.

Existing approaches for training SNNs can be roughly divided into two categories. The first
category, referred to as conversion approaches between ANNs and SNNs, entails employing a
straightforward continuous-valued ANN during the training process and subsequently converting it
into an accurate spiking equivalent (Diehl et al., 2016). Notably, Rueckauer et al. (2017) introduced
conversions between SNNs and CNNs, encompassing architectures like VGG-16 and Inception-
v3. The second category, known as direct training approaches, involves configuring an SNN to
accommodate discontinuous spike activities and then training it using back-propagation through
time (Huh and Sejnowski, 2018). Famously, SpikeProp and its variants transfer the information in
the timing of a single spike (Bohte et al., 2002; McKennoch et al., 2006). However, SpikeProps are
constrained to single-spike learning, which usually causes the deactivation of numerous neurons,
that is, a phenomenon known as “dead neurons” (Jin et al., 2018). Some researchers attempted
to approximate the back-propagation dynamics by some surrogate gradients (Neftci et al., 2019;
Li et al., 2021). Shrestha and Orchard (2018) incorporated firing derivatives by incorporating the
temporal dependency between spikes; thus, the back-propagated error at a given time step becomes
an integration of earlier spike inputs.

2.3 Related Works

Over the past decades, there have been theoretical studies examining the expressivity or universality
of SNNs. Maass et al. showed that the designed SNNs can simulate some typical computational
models such as Turing machines (Maass and Bishop, 2001), random access machines (Maass, 1997),
threshold circuits (Maass, 1996; Maass and Markram, 2004), etc. Some researchers proved spiking
neural P systems to be universal, computationally equivalent to Turing machines (Wu et al., 2018)
and counted the complexity parameter to construct a universal system (Zeng et al., 2014). She et al.
(2021) showed the universal approximation property of SNNs by leveraging spike propagation paths.
Zhang et al. (2021) investigated the evolution bifurcation of spiking dynamics.

There are few academic studies on the computational efficiency of SNNs, such as the convergence
in limit results for SNNs solving the sparse coding problem for feature extraction (Tang, 2016; Tang
et al., 2017), the convergence rates for SNNs solving temporal quadratic programming (Chou
et al., 2019), and the time complexity of approximating multivariate spike flows. Table 1 lists the
comparative results on computational efficiency of SNNs. Besides, two studies (Zhang et al., 2021)
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Table 1: Comparative results on computational efficiency of SNNs.
Works Models Objects Computational Complexity

Tang et al. (2017)
configured SNNs

of LCA (Rozell et al., 2008)
solving Sparse Coding Problem Convergence

Chou et al. (2019)
simple SNNs

with balanced outputs
solving Quadratic Programming Polynomial Complexity

Zhang and Zhou (2022)
self-connection SNNs
with Poisson inputs

approximating specific functions Polynomial Complexity

and (Zhang et al., 2023) provided calculable ways for approaching the lower and upper bounds of
adaptive SNN systems, respectively.

Except for the universality and system, the firing rates or equally the number of firing spikes
are the alternative measure of network activities for investigating neural computation and model
dynamics because of the close relation between firing rates and network function, including neural
input, connectivity, spiking function, and firing process (Adrian, 1926; Aertsen et al., 1980). There
are great efforts to use firing rates in SNNs for some real-world tasks (Huh and Sejnowski, 2018;
Shrestha and Orchard, 2018), such as vision and speech recognition. Besides, Barrett et al. (Barrett
et al., 2013) and Chou et al. (Chou et al., 2019) showed that the averaged firing rate can approximate
the optimal solutions of some quadratic programs within polynomial complexity. Zhang and Zhou
(2022) employed an instantaneous firing rate, instead of the averaged firing rate or the total number
of firing spikes, to enable SNNs to approximate dynamical systems.

3. Intrinsic Structures of Spiking Neural Networks

In this section, we will investigate the intrinsic structures of SNNs from perspectives of the expres-
sivity and spiking dynamics. From Eq. (3), we can formulate the function expressed by a two-layer
SNN as follows

f(·, t) = 1

t− t′

N∑
k=1

wkf
hidden
k (·, t) ,

fhidden
k (·, t) = fe

(
τr
τm

∫ t

t′
exp

(
− t′′ − t′

τm

)
Wk,[M ]I(t

′′) dt′′
)

,

(4)

in which fhidden
k (·, t) indicates the expressive sub-function related to the kth hidden neuron for

k ∈ [N ], wk and Wk,[M ] denote the first-layer and second-layer weights that connect to the kth

hidden neuron, respectively, where Wk,[M ] is a row vector, i.e., the ith row of matrix W. Here,
we add a denominator t − t′ so that the expressive function f(·, t) indicates the firing rate of the
concerned SNN after the last firing timestamp t′. According to the recognition of (Zhang and Zhou,
2022, Theorem 1), the expressive hypotheses with the form of Eq. (4) are not dense in continuous
function space Cl(K,R) for l ∈ N+.

Notice that the expressive function of the LIF-SNN consists of several key components: the
membrane time hyper-parameter τm in the integration operation, the spike excitation function fe that
corresponds to the membrane resistance hyper-parameter τr and firing threshold hyper-parameter
ufiring in the firing-reset mechanism, and the learnable connection weights wk and Wk,[M ]. According
to the framework of neural network learning in Figure 1, the former two closely relate to the intrinsic

7



ZHANG, CHEN, WU, ZHANG, XIONG, GU, AND ZHOU

structures within spiking computations. Over the past decades, there have been theoretical studies
examining the expressivity of SNNs, as stated in Subsection 2.3; however, systematic analyses of the
intrinsic structures of SNNs have been notably absent in prior studies. In the forthcoming subsections,
we will take an in-depth analysis of the roles played by these two key components.

3.1 Eigenvalues of Integration Operations

We focus on the spiking dynamics led by the integration operation. Before that, we define the
accumulative injection voltage (i.e., the variable of the pre-synaptic state) v(t) ∈ RN as follows

dv(t)

dt
= fagg(I(t)) . (5)

For convenience, we specify the mapping h : v(t) 7→ fagg(I(t)). Thus, Eq. (1) becomes
τm

du(t)

dt
= −u(t) + τr

dv(t)

dt
dv(t)

dt
= h(v) .

(6)

According to Pontryagin’s Minimum principle (Pontryagin, 1987), one can obtain the dynamical
system for spiking dynamics led by Eq. (1) as follows

H(u,v, t) =
〈
p,

du

dt

〉
+

〈
q,

dv

dt

〉
+ l(u) , (7)

where l(·) is the cost function, and the state variables p = (p1, p2, . . . , pN )⊤ ∈ RN and q =
(q1, q2, . . . , qN )⊤ ∈ RN indicate the adjoint state variables that correspond to the membrane voltage
u and synaptic current v, respectively, in which the dynamics of these adjoint state variables are

dp

dt
= −∂H

∂u
and

dq

dt
= −∂H

∂v
.

It is evident that the pair of state variables (p, q) obeys the Hamiltonian dynamical system (Llibre
et al., 2015). Combined with Eq. (6), Eq. (7) becomes

H(u,v) = −⟨p̃,u⟩+ ⟨q̃, h(·)⟩+ l(u) ,

τm
dp̃

dt
= p̃−WM(p)q̃ − dl(u)

du
, where M

(p)
ji =

∂h(vi)

∂Ij
,

dq̃

dt
= −M(q)q̃ + τr

dp̃

dt
, where M

(q)
ki =

dh(vi)

dvk
,

(8)

where p̃ = p/τm, q̃ = q + p/τm, and i ∈ [N ]. Here, we employ the Hamiltonian dynamical system
to describe the evolution of spiking dynamics led by the integration operation. The advantage of this
description is that it gives important insights into the spiking dynamics, independent of data-driven
calculations. Intuitively, we have a total “energy” explicitly defined for the overall network as follows

H(t) = |u|2 + 2τr
τm

∫ 〈
dv

dt
,u(t)

〉
dt− θ , (9)
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where θ is a universal constant. It is observed that Eq. (9) is a Lyapunov-like function that converts
SNNs into a Hamiltonian dynamical system (Llibre et al., 2015). With direct calculations, we can
obtain the following derivative

dH
dt

=
1

2
u⊤ M(τm) u ,

where M(τm) is of the quadratic form

M(τm) =


−1/τm 0 . . . 0

0 −1/τm . . . 0
...

...
. . .

...
0 0 . . . −1/τm


N×N

. (10)

This derivative dH/dt represents the rate at which the energy function changes, which is determined
by the hyper-parameter τm.

Thus, we have the following conclusion.

Theorem 1 Provided the initial condition u(0) = ureset or u(t′) = ureset, SNN with LIF neurons in
Eq. (1) leads to a Hamiltonian system, and −1/τm indicates the eigenvalue of the integration opera-
tion, where −1/τm < 0, −1/τm = 0, and −1/τm > 0 correspond to the dissipative, conservative,
and energy-diffuse dynamical systems, respectively.

Theorem 1 reveals that the membrane time hyper-parameter τm is relative to the eigenvalue of the
integration operation and determines the functional topology of spiking dynamics. This conclusion
coincides with the insights of (Zhang et al., 2021, Theorem 2). The proof of Theorem 1 can be
accessed in Appendix B.

Drawbacks of pre-fixing eigenvalues of integration operations. Notice that in conventional
SNN learning, the value of membrane time hyper-parameter τm is often pre-determined; thus, the
functional topology, i.e., whether the system is dissipative, conservative, or energy-diffuse dynamical
systems, of the SNN is determined no matter what system the actual data is drawn from. For example,
one undertakes the task of predicting the efficiency of thermal power generation, in which the model
takes in the fuel data and outputs the generated electric energy. Setting a positive value for τm to
transform the SNN into an energy-diffuse system would be inappropriate, as prior knowledge dictates
that there will inevitably be energy loss in the thermal power generation process. Thus, an improper
setting of τm can hinder the possibility of proper SNN learning. Furthermore, for most tasks, it is
usually challenging to identify in advance which system the task conforms to or the data comes
from. In other words, one can hardly know how to set a proper τm before learning. Therefore, the
eigenvalues (relative to τm) of the integration operation of SNNs must be adaptive to the data.

Besides, the switching of various systems is highly sensitive to the relation between 1/τm (relative
to eigenvalues) and the critical point at 0; the functional topology of SNNs makes a sudden change
when 1/τm crosses the critical point. This phenomenon is commonly referred to as a “bifurcation”,
as discussed by Zhang et al. (2021). Obviously, the bifurcation may cause an unstable structure
within the hypothesis space expressed by SNNs, particularly when SNNs suffer from some functional
perturbations. Therefore, the risk of unstable structure is another drawback of pre-fixing eigenvalues
of integration operations prior to learning.
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3.2 Depolarization of Firing-Reset Mechanisms

In this subsection, we leverage the effects of the firing-reset mechanism. For convenience, we here
consider the univariate system, i.e., u is a scalar variable, and replace the membrane resistance hyper-
parameter τr with a gate function g : R→ R, satisfying: (1) g is relative to the accumulative injection
voltage v, the derivative of which indicates the instantaneous injection voltage, i.e., dv(t)/dt =
fagg(I(t)) , (2) g(v) is non-negative, i.e., g(v) ≥ 0 for v ∈ R, and (3) constant integral on time
interval [t′′, t′], i.e.,

∫ v(t′)
v(t′′) g(v) dv = C1, where t′, t′′ are two adjacent firing timestamps and C1 > 0.

Hence, Eq. (1) becomes

τm
du(t)

dt
= −u(t) + g(v)

dv(t)

dt
, (11)

where v(t) denotes the accumulative injection capacity from timestamps t1 to t. To ensure the
neuron excitation, the accumulative injection capacity should be larger than the firing flux, i.e.,
v(t) ≥

(
ufiring − ureset

)
for t ∈ [t1, t2] ⊆ [t′′, t′], since the LIF-SNN with τm > 0 is a dissipative

system. We further suppose that v(t1) = ufiring − ureset and v(t2) = c · (ufiring − ureset) where c ≥ 1.
If one fixed the values of t1 and c, we can quantify the effects of the firing-reset mechanism by
investigating the information capacities at pre-synapse and post-synapse, compared to the firing flux
between the firing threshold and reset voltage.

One has the time integral of membrane potential u(t)∫ t2

t1

u(t) dt =

∫ t2

t1

[
−τm

du(t)

dt
+ g(v)

dv(t)

dt

]
dt

= −τm
∫ t2

t1

du(t)

dt
dt+

∫ t2

t1

g(v)
dv(t)

dt
dt

= −τm
∫ u(t2)

u(t1)
du+

∫ v(t2)

v(t1)
g(v) dv

= τm [u(t1)− u(t2)] +

∫ v(t2)

v(t1)
g(v) dv ,

where the computed integral indicates the membrane capacity (i.e., post-synaptic state variable) of
spiking neurons during time interval [t1, t2]. It is observed that the membrane capacity is dominated
by the membrane potential values at endpoints (i.e., timestamps t1 and t2) and the constant that
corresponds to g. For convenience, we set u(t1) = ureset.

Intuitively, we define

g(v)
def
=

C2

t′ − t′′
(C2 > 0) , (12)

on interval v(t) ∈ [t1, t2] for t ∈ [t′′, t′]. It is evident that g(v) is apposite since∫ v(t2)

v(t1)
g(v) dv =

(c− 1)C2

(t′ − t′′)

(
ufiring − ureset

)
.

The gate function g limits an excitation area, whose width is the average injection capacity so that
the neuron is activated in a gradual manner when the membrane potential crosses the excitation area.
Further, the last term g(v) dv(t)/dt in Eq. (11) denotes the voltage that is instantaneously injected
into the excitation area, which reduces to the conventional threshold-triggered model in Eq. (1) once
g(v) defaults as a constant like τr.

10
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Figure 3: Illustrations for three typical cases of Eq. (13).

To sum up the above, we have∫ v(t2)

v(t1)
g(v) dv︸ ︷︷ ︸
①

−
∫ t2

t1

u(t) dt︸ ︷︷ ︸
②

= τm [u(t2)− ureset]︸ ︷︷ ︸
③

. (13)

Informally speaking, the terms ①, ②, and ③ indicate the accumulative injection voltage, the accu-
mulative pulse voltage received by spiking neurons, and the consumed pulse voltage during time
interval interval [t1, t2], respectively.

Figure 3 further illustrates three typical cases of Eq. (13). For case (a), spike neuron receives
less pulses instantaneously as the injection period becomes longer. Thus, the membrane potential
cannot arrive at the excitation area. For case (b), spike neuron receives more pulses instantaneously
as the injection period becomes shorter. Thus, the membrane potential has entered in the excitation
area but does not exceeds the firing threshold due to inadequate injection capacity. For case (c),
the instantaneous injection pulses are enough to activate the spiking neuron, so that the membrane
potential crosses the excitation area and exceeds the firing threshold, i.e., t′ = t2. Hence, Eq. (13)
has a significant point (c− 1)C

(
ufiring − ureset

)
= τm ufiring (t

′ − t1) .
Notice that when we mentioned “less” or “more” pulses, it actually corresponds to a formal

description of the injection ratio or sampling density of input data, the values of which are related
to dv(t)/dt and ufiring − ureset. Accordingly, we have the instantaneous and average injection
ratios (Zhang and Zhou, 2022) as follows

instantaneous:
dv(t)

dt
· 1

ufiring − ureset
,

average :
1

t2 − t1

∫ t2

t1

[
dv(t)

dt
· 1

ufiring − ureset

]
dt =

g(v)

ufiring − ureset
.

It is observed that the injection ratio is dominated by the width of the excitation area and the capacity;
a larger width as well as a smaller firing flux, results in a larger injection ratio.

The derivation above underscores an intuitive observation that increasing the injection ratio
facilitates the excitation of spiking neurons. However, it is crucial to note that the injection ratio is

11
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intimately linked with the data, particularly the sampling density of neural encoding, as mentioned
earlier. Once the firing-reset mechanism is pre-determined — meaning, the values of the firing
threshold and reset voltage are fixed before receiving any data — the firing capacity of a spiking
neuron is determined, regardless of the injection ratio or sampling density. Hence, even though
the entire network adopts a common initialization method, it still remains possible to impede the
excitation of spiking neurons or even lead to the occurrence of “dead neurons”. Developers are thus
compelled to meticulously fine-tune hyper-parameters when they run SNNs on different datasets
or employ diverse neural encoding techniques. For instance, when the injection rate or sampling
density is low, one may need to augment the firing flux to circumvent the issue of “dead neurons”.
Conversely, when the injection rate or sampling density is high, reducing the firing flux becomes
imperative to regulate the excitation frequency of neurons. Therefore, the configuration of the
firing-reset mechanism in SNNs must adapt to the specific data at hand.

Summary of Section 3. In this section, we conducted a systematic investigation into the impact of
various components on the expressivity of SNNs, specifically focusing on the intrinsic structures
and hyper-parameters of the SNN model itself. We delivered two primary conclusions: (1) The
membrane time hyper-parameter τm is closely tied to the eigenvalue of the integration operation,
dictating the functional topology of spiking dynamics. An improper setting of τm can disable the
possibility of proper SNN learning and elevate the risk of structural instability. Therefore, it is
imperative that the eigenvalues (in relation to τm) of the integration operation of SNNs must be
adaptive to the data. (2) The firing-reset mechanism, encompassing hyper-parameters ufiring, ureset,
and τr, fundamentally governs the firing capacity of SNNs, mitigating the influence of the injection
ratio or sampling density of input data. An improper setting of the firing-reset mechanism can hamper
the generation of spiking flows, potentially resulting in an abundance of inhibited neuron or even the
occurrence of “dead neurons”, or alternatively, leading to a higher excitation frequency. Therefore,
the setting of the firing-reset mechanism of SNNs must adapt to the data. Accordingly, we present
two feasible ways for improving SNN learning in Section 4 and Section 5, respectively.

4. Self-connection Architecture and Adaptive Eigenvalues

As discussed in Subsection 3.1, it is advantageous for SNN learning to make the eigenvalues of
integration operations adaptive to the data or environment. An intuitive approach is to render the
membrane time hyper-parameter τm relative to eigenvalues as learnable, replacing the pre-fixed
values. Given the loss function E, we list the corresponding gradients as follows

∇τmE ∝ τr
∑
j∈[M ]

Wkj

[∫ t

t′
exp

(
t′ − s

τm

)
(s− t′)Ij(s) ds

]
,

∇Wkj
E ∝ τr

∫ t

t′
exp

(
t′ − s

τm

)
Ij(s) ds ,

(14)

where the subscript k denotes the kth spiking neuron. However, this approach presents significant
challenges, as elaborated in (Zhang et al., 2021). The main impediments are two folds. (1) The
existing SNN training methodologies predominantly rely on the spike response model scheme,
as depicted in Eq. (3), where the membrane potential uk(t) is predominantly influenced by an
indirect product interaction of connection weights Wkj and the eigenvalue of integration operations
−1/τm. Consequently, concurrently optimizing both Wkj and τm using gradient descent is arduous.

12
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Moreover, there is a lack of guaranteed convergence for alternating gradient optimization. (2) Errors
stemming from τm accumulate over time; thus, the gradients appear to vanish, i.e., ∂uk/∂τm → 0 as
t→ t′, and conversely, the gradients explode over time when t≫ t′. Thus, directly training τm can
lead to challenges associated with gradient explosion and vanishing.

Moreover, a feasible approach involves searching for τm using zero-order optimization like
Bayesian optimization. The key idea is to regard τm as a group of hyper-parameters drawn from a
prior distribution so that the optimization challenges associated with solving for Wkj and τm can be
reduced to mature methods. However, this approach succeeds in an apposite initialization, placing
greater demands on computation and storage.

In this section, we introduce an alternative approach, i.e., adding the self-connection architec-
ture, to attain adaptive eigenvalues of the integration operations. The key idea is to decouple the
relationship between the eigenvalues and the membrane time τm, enabling us to achieve adaptive
eigenvalues by training self-connection parameters.

4.1 Mutual Promotion and Back-Propagation of Adding Self-connection Architecture

We begin with the basic computation of SNNs equipped with self-connection architectures as follows

du(t)

dt
= −u(t)

τm
+ u∗(V, t) +

τr
τm

fagg(I(t)) . (15)

In contrast to the computations of LIF equations, Eq. (15) employs an extra vector u∗(V, t) =
(u∗1, . . . , u

∗
N )⊤ portrays the mutual promotion between neurons adjusted by self-connection parame-

ters V. Here, we provide two intuitive implementations for u∗(V, t) and omit t for simplicity
Linear : u∗k(V, t) =

∑
i ̸=k

Vkiui + o(|u|) , (Zhang et al., 2021)

Polynomial : u∗k(V, t) =
∑
i

V
(1)
ki ui +

n∑
p=2

〈
V

(p)
k ,Pp(u)

〉
+ o(|u|p) ,

(16)

for k ∈ [N ], where o(|u|p) denotes a high-order over the n-order polynomial |u|p for p ∈ N+, Vp
k

indicates a vector (V(p)
k,j)j∈|Λ|, and Pp(u) = (uα1

1 uα2
2 . . . uαN

N )(α1,...,αN )∈Λ indicates another one in
which |α| = α1 + α2 + · · ·+ αN = p. Taking an example of N = 2 and n = 2, we have{

u∗1(V, t) = V
(1)
11 u1 +V

(1)
12 u2 +V

(2)
11 u

2
1 +V

(2)
22 u

2
2 +V

(2)
12 u1u2 ,

u∗2(V, t) = V
(1)
21 u1 +V

(1)
22 u2 +V

(2)
11 u

2
1 +V

(2)
22 u

2
2 +V

(2)
12 u1u2 .

(17)

Key Ideas of Adding Self-connection. The motivation for adding self-connection to SNNs is to
enhance the adaptivity of the eigenvalues of integration operations. Essentially, our objective is
to guarantee that the integration operation of SNNs possesses dynamically adjustable eigenvalues.
One viable way is to endue the integration operation with learnable parameters, as outlined in the
subsequent algebraic equation

du

dt
= M(V, τm)u+G(u,λ) with G(u,λ) = o(|u|) , (18)
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where M1(τm) = diag{−1/τm, . . . ,−1/τm}N and M2(V) is relative to the learnable parameter
V. So the eigenvalue ρi of M(V, τm) can be calculated as the sum of that of M1(τm) and that of
M2(V). Suppose that the eigenvalues of the matrix M2(V) are β1, . . . , βN . Then we have

ρi = −1/τm + βi , (19)

in which both τm and V adjust the eigenvalues. Since the self-connection weights are learnable, the
eigenvalues can be adaptive to the changing environment over time even when τm remains constant.
Thus, the key idea of adding self-connection is to decouple the strong dependency between the
eigenvalues and the membrane time τm, allowing us to obtain adaptive eigenvalues through the
adjustment of the learnable parameters V. The bounds of Theorem 3 in the next subsection further
confirm this conjecture. Further, it is promising to manage the risk of unstable structure, which will
be investigated in Subsection 4.3.

Error Back-Propagation. We here provide a concrete scheme for implementing SNN with self-
connection architectures. This work considers M pre-synaptic input channels and N hidden spiking
neurons. Formally, we have the following equation for neuron k ∈ [N ]

duk(t)

dt
= −uk(t)

τm
+ u∗k(V, t) +

τr
τm

M∑
j=1

WkjIj(t) , (20)

which has two types of learnable parameters, i.e., self-connection weights V and connection weights
W. Akin to the spike response model scheme (Gerstner, 1995), Eq. (20) has a closed-form solution

uk(t) =
t∑

s=t′

exp

(
− t′ − s

τm

)
∆(s) with ∆(s) = u∗k(V, s) +

τr
τm

M∑
j=1

WkjIj(s) , (21)

Finally, the generated spike is transmitted to the next neuron via the spike excitation function
fe : u 7→ s. Provided supervised signals, the proposed model can be optimized via the framework of
error back-propagation. The temporal-accumulated error in the discrete-time interval [1 : T ] can be
formulated by

E =
1

2

T∑
t=1

N∑
k=1

Ek(t) =
1

2

T∑
t=1

L (o(t), ô(t)) , (22)

where L indicates the loss function, such as the least square loss and 0-1 loss functions, and ô(t)
denotes the target supervised signal related to the prediction signal o(t). So for time t, we have

∂Ek(t)

∂Wkj
=

∂Ek(t)

∂ok(t)

∂ok(t)

∂uk(t)

∂uk(t)

∂Wkj
, (23)

where the first term is the error back-propagation of the excitatory neurons, the second term is that of
the generated spikes with respect to the membrane potential, and the third term denotes that of the
basic bifurcation neuron. Plugging Eq. (21) and Eq. (22) into Eq. (23), we have

∂Ek(t)

∂Wkj
=

(
ok(t)− ôk(t)

)
f ′
e

(
uk(t)

)
τr
τm

[
t∑

s=t′

exp

(
−s− t′

τm

)
Ij(s)

]
,
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where t′ denotes the last firing time. However, the derivative of the spike excitation function f ′
e(u) is

a persistent problem for training SNNs with supervised signals. Recently, there have emerged many
seminal approaches for addressing this problem, such as the smoothing derivative via the probability
density functions (Shrestha and Orchard, 2018), modified spike excitation functions (Zhang and
Zhou, 2022), and the stochastic excitation mechanism proposed in Section 5. Therefore, we obtain
the back-propagation pipeline relative to connection weights Wkj .

Similarly, the correction with respect to some element V is given by

∇VEk =
T∑
t=1

(
ok(t)− ôk(t)

)
f ′
e

(
uk(t)

)
1

τm

∂u∗k(V, t)

∂V
exp

(
−t
τm

)
.

If ∂u∗k(V, t)/∂V indicates a linear partial derivative, we further have

∇VEk =

T∑
t=1

(
ok(t)− ôk(t)

)
f ′
e

(
uk(t)

)
sk(t)

τm
exp

(
−t
τm

)
when n = 1 .

4.2 Expressivity of Adding Self-connection Architectures

This subsection shows the expressive powers of SNNs with self-connection. The first conclusion is
about the universal approximation.

Theorem 2 Let K ⊂ RM be a compact set, and K0 is a null set. Provided l ∈ N+, if the spike
excitation function fe is l-times differentiable on K/K0 that satisfies

0 <

∣∣∣∣∣
∫
K/K0

Drfe(u) du

∣∣∣∣∣ <∞ , for any r ∈ [l] ,

and W ∈ RN×M , w ∈ RN×1, then there exists some time t such that the set of functions f(·, t) :
K → R expressed by a SNN with the two-layer self-connection architecture and linear mutual
promotion, which is of the form

f(·, t) = 1

t− t′
w⊤f hidden(·, t) ,

fk(·, t) = fe

Wk,[M ]

∫ t

t′
exp

(
− t′′ − t′

τm

)
I(t′′) dt′′ − 1

τm

∑
i∈[N ]

exp

(
− t− t′

τm

)
Vkisi(t

′)

 ,

(24)
where f hidden = (f1, . . . , fN ) and k ∈ [N ], is dense in C0(K,R).

Theorem 2 shows that the SNN with self-connection architectures is a universal approximator, which
provides a solid cornerstone for the expressive power of SNNs. We utilize the invertibility of the
Fourier transform on Sobolev spaceW l,p

µ (K,R) (p > 1), to project the concerned functional space
Cr(K,R) into a characteristic space, and the corresponding objective function is transformed as
a single integral over the characteristic space. According to Fubini’s theorem, the approximation
problem on Cr(K,R) can be converted into another that uses multiple integrals to construst a
single integral on the characteristic space. The subsequent proof can then be completed along the
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thought lines of the technical exposition given by Carslaw and Rogosinski (1931). The full proof of
Theorem 2 can be obtained in Appendix C.

Notice that Theorem 2 also holds for SNNs with self-connection architectures and polyno-
mial mutual promotion. The second conclusion is about the adaptive eigenvalues adjusted by V.
Correspondingly, we can define a “legal” energy function and its derivative by

H(t) = |u|2 + 2τr
τm

∫ 〈
∂vsc

∂t
,u(t)

〉
dt− θ with

∂vsc(t)

∂t
= u∗(V, t) + fagg(I(t)) (25)

and
dH
dt

=
1

2
u⊤ M(V, τm) u , (26)

respectively, with

M(V, τm) =


V11 − 1/τm V12 . . . V1N

V21 V22 − 1/τm . . . V2N
...

...
. . .

...
VN1 VN(N−1) . . . VNN − 1/τm

 .

Based on Eq. (25) and Eq. (26), we have

Theorem 3 Provided the initial condition u(0) = ureset or u(t′) = ureset, the SNN with the self-
connection architecture and linear mutual promotion leads to an adaptive Hamiltonian system.
Especially there are

(i) at most 2N−1 solutions if Vij ≥ 0 for i, j ∈ [N ] (Zhang et al., 2021, Theorem 2);

(ii) are at least cN logN solutions (0 < c ≤ 1/2) .

Theorem 3 shows that adding self-architectures contributes to enough solutions, bounded between
polynomial (lower bound cN logN ) and exponential (upper bound 2N−1) numbers, for approxi-
mating an adaptive Hamiltonian system as well as maintaining adaptive eigenvalues. The proof of
Theorem 3 can be accessed in Appendix D.

Simulation Experiment. Here, we further investigate the effects of V on the expressivity of adding
self-connection architectures. We take a simulation experiment of two self-connection spiking
neurons with τm = τr = 1, ureset = 0, and ufiring = 10 and initialize three points: A(3, 6), B(5, 6),
and C(6, 3) at the starting timestamp t = 0. We conduct four trials with

V =

[
0 0
0 0

]
,

[
0 0
1 0

]
,

[
0 1
1 0

]
,

[
0 4
1 0

]
,

where their eigenvalues correspond to

β =

[
0
0

]
,

[
0
0

]
,

[
−1
1

]
,

[
−2
2

]
.

According to ρ = [−1/τm;−1/τm] + β, we can obtain the eigenvalues of integration operations

ρ =

[
−1
−1

]
,

[
−1
−1

]
,

[
−2
0

]
,

[
−3
1

]
.
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Figure 4: Illustrations for (a) trajectories for SNNs with/without self-connection conquering bifurca-
tion and (b) Lyapunov exponent and bifurcation diagram of SNNs with self-connection.

In Figure 4(a), the plotted trajectories exhibit distinctive behaviors over time. It is observed that
different eigenvalues yield various trends; zero eigenvalue leads to a line parallel to axes, while
negative and positive eigenvalues make the curves converge to 0 (corresponding to ureset) and 10
(corresponding to ufiring), respectively.

To further leverage the effect of V, we fix V11 = V22 = 0 and V21 = 1 and then investigate the
bifurcation diagram of SNNs. Figure 4(b) plots the curves of the Lyapunov exponent as V12 varies in
the x-axis interval of [−1, 4]. Notice that in the bifurcation diagram given V21 = 1, two critical points
emerge: V12 = 0 and V12 = 1, which split the eigenvalue interval as (−∞,−1]∪ [−1, 0]∪ [0,+∞).
With an increasing V12 as well as one of the eigenvalues, the system state is constantly changing,
giving rise to intricate dynamic behaviors such as bifurcation, chaos, and limit cycles. It is observed
that some periodic states are embedded within the chaotic (i.e., unstable) states.

The related computations of this simulation experiment can be obtained in Appendix E.

4.3 Structural Stability of Adding Self-connection Architectures

In this subsection, we aim to delve into the structural stability associated with the inclusion of
self-connection architectures. The fundamental way of identifying structural stability involves adding
the (functional) perturbations led by a small parameter ϵ to a critical point of the algebraic equation.
Notice that the critical point is sometimes referred to as an equilibrium point or an equilibrium
function (please refer to (Bažant, 2000) for details). The subsequent step is to observe whether
the perturbed system bifurcates from the critical point or from some periodic orbits surrounding
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Figure 5: The vector-field plots for bifurcation and structural stability.

the critical point; the latter here is called stable bifurcation solution, which intrinsically indicates a
kind of functional equivalence classes (Kim and Sejnowski, 2021). This is illustrated in Figure 5.
Unfortunately, counting the stable bifurcation solutions of multivariate time-varying dynamical
systems, at the present state of knowledge, seems to be hopeless (Llibre et al., 2015). Here, we
simplify this issue by counting (local) limit cycles, which equivalently represent a type of stable
bifurcation solution. This choice is justified by the fact that a limit cycle of planar polynomial time-
varying dynamical systems in Eq. (16) essentially constitutes an isolated periodic orbit (Christopher
and Li, 2007). For convenience, we denote u∗i (V, t) as u∗i (V, t) = Polyi(u(t);n) and formally
exhibit the algebraic form of Eq. (15) as follows

dui(t)

dt
= −ui(t)

τm
+ Polyi(u(t);n) (27)

for i ∈ [N ] and N ≥ 2. The corresponding perturbed system becomes

dui(t)

dt
= −ui(t)

τm
+ Polyi(u(t);n) + ϵ Polyi(u(t);m) , (28)

where ϵ indicates a small parameter that scales the perturbation magnitude of degree m. Here, we
are interested in the small limit cycles of Eq. (28), which bifurcate at ϵ from the critical points of
Eq. (27) as ϵ→ 0. We employ H(n) to denote the maximum number of limit cycles of Hamiltonian
systems with polynomials of degree n in Eq. (16).

Next, we develop an in-depth investigation on the existence and explicit bounds of H(n). Now,
we directly list our conclusions, and the computation details can be accessed in Appendix F.

Theorem 4 (Existence.) Let ũ be a critical point of system (28). For ϵ > 0 sufficiently small, there
exists a (2π-periodic) stable bifurcation solution f(t, ϵ) of system (28) s.t. f(0, ϵ)→ ũ as ϵ→ 0.

Theorem 4 shows the existence of (2π-periodic bifurcation) limit cycles as well as stable bifurcation
solutions of the perturbed dynamical system, which implies that H(n) ≥ 0. The complete proof of
Theorem 4 can be accessed in Appendix G.

Theorem 5 (Lower Bound.) Let H(n) denote the maximum number of limit cycles of dynamical
systems with n-order polynomial implementation in Eq. (16). Then we have H(n) = Ω(n2 lnn).
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Algorithm 1 Algorithmic Calculation for Upper Bounds of H(n).
Input: The number of spiking neurons N = 2, the polynomial degree n, the polynomial degree m

relative to perturbations, the estimation degree K, apposite perturbation ϵ
Output: kth component Gk(t, ϵ) for k ∈ [K], bifurcation solution f(t, ϵ)
Procedure:

1: Generate Poly(u(t);n) and Poly(u(t);K) in a feed-forward way
2: Compute du1(t)

dt and du2(t)
dt from Eq. (28)

3: Convert the perturbed system (28) into ∂f(t,ϵ)
∂t =

∑K
k=0 ϵ

kFk(t, f) + ϵK+1reset(t, f, ϵ)
4: Compute functions Fk for k = 0 or k ∈ [K]
5: Let δF = 0
6: for k from 1 to K − 1 do:
7: for r from 1 to K − k do:
8: δF ← δF + ϵr

r!
∂rFk(t,f(t,ϵ,u))

∂ϵr

∣∣
ϵ=0

9: Re-compute Fk provided δF according to Fk(t, f(t, ϵ, u)) = Fk(t, f(t, 0, u)) + δF
10: Compute Gk provided δF and Fk according to

Gk(t, u) =
∫ t
0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds

11: Compute δR←
∫ 2π
0 reset(s, u, ϵ) ds by sampling u ∈ K

12: Compute f provided Gk, Fk, and δR according to
f(t, ϵ, u) = u+

∫ t
0 F0(s, ũ) ds+

∑K
k=0 ϵ

kGk(t, u) + δR
13: return f and Gk(t, ϵ)

Theorem 5 shows the lower bound of H(n) of the dynamical system led by Eq. (15). In detail, we
have H(1) ≥ 0, H(3) ≥ 1, H(7) ≥ 25, H(15) ≥ 185, and H(31) ≥ 1262.

However, it is a tricky challenge to tighten H(n) that corresponds to Eq. (15) in confronted of
dynamical systems, which coincides with the second part of Hilbert’s 16th problem. In the near past,
it has not been possible to find uniform upper bounds for H(n), referring to the knowledge of Llibre
et al. (2015). Thus, we present a calculable approach for computing the upper bound of H(n) rather
than finding the explicit one.

Proposition 6 From Algorithm 1, H(n) can be upper bounded by the number of positive simple
critical points of Gk(t, ϵ) for k ∈ [K].

Notice that the numerator for each kth component Gk(t, ϵ) is a polynomial function with degree
⌊N ·T = 2 ·2π⌋ = 12. Drawing on the experience of Huang and Yap (2023), we can greatly improve
the calculation speed by updating Eq. (49) along with forcing G1 ≡ G2 ≡ · · · ≡ GK−1 ≡ 0.

Concrete example of the algorithmic upper bound. Here, we consider a simple case as follows:
du1(t)

dt
= −u1(t)

τm
+ u21(t)u2(t) + ϵ Poly1(u(t);m)

du2(t)

dt
= −u2(t)

τm
+ u1(t)u

2
2(t) + ϵ Poly2(u(t);m) ,

(29)

where we have configurations of N = 2, n = 3, m = 3, K = 5, and

Polyi(u; 3) = βi1u1 + βi2u2 + βi3u
2
1 + βi4u1u2 + βi5u

2
2 + βi6u

3
1 + βi7u

2
1u2 + βi8u1u

2
2 + βi9u

3
2 ,
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for i ∈ {1, 2}. It is known as a cubic system with m = 3rd polynomial perturbations. Provided
K = 5th component, we have the following conclusion.

Corollary 7 The maximum number of limit cycles of the concerned system (29) is at most 3, which
can be calculated by the 5th components.

Corollary 7 shows that using Algorithm 1 with m = 3 and K = 5 enables the upper bound of H(n)
with N = 2 to be calculable. Combining with the lower bound from Theorem 5, we can conclude
that 1 ≤ H(3) ≤ 3, which is a tight bound and demonstrates the effectiveness of Theorem 5. The
detailed materials of this simulation example can be accessed in Appendix I.

4.4 Discussions about Adding Self-connection Architectures

In this section, we aim to enrich the adaptivity, or equally eigenvalue flexibility of integration
operation by adding self-connection architectures. It is worth noting that the utilization of self-
connection architectures is not a novel concept within the community of ANNs. A recent study
points out that adding self-connection contributes to the robustness and rapid convergence of neural
network training (Shahir et al., 2023). Besides, Zhang et al. (2021) resort to the algebraic equation
and decoupling principles led by Eq. (18) and Eq. (19) for improving the performance of SNNs. Kim
et al. (2023) attest to the effectiveness of SNNs equipped with neuron-sharing architectures.

Indeed, it is important to acknowledge a practical consideration. The current implementation
of the mutual promotion, exemplified by the Taylor expansion of the self-connection function in
Eq. (16) from neuron k to neuron i, inevitably leads to a larger memory consumption, especially
when the input spike sequences are high-dimensional and high-frequency. Thus, it is prospective
to explore some more practical techniques or modules. Besides, it is crucial to recognize that
while adding self-connection architecture presents a promising avenue, it represents just one of the
approaches for implementing adaptive eigenvalues in the integration operation of SNNs. While it
holds considerable potential, it may not be the definitive solution. Therefore, it is imperative to
actively consider and explore other valid approaches to ensure a comprehensive understanding and to
address the challenges that arise in this context.

Structural stability is not necessarily related to accuracy. In the case of a structurally unstable
system, a bifurcation would lead to a total collapse of its full invariant set. Essentially, the hypothesis
space of such a structurally unstable system is flawed; thus, a structurally unstable system potentially
hampers the accuracy. Hence, it is imperative for applicants to steer clear of employing structurally
unstable systems. This concern stands as a focal point in our work. Hence, our aim is to scrutinize the
structural stability of SNNs. Our findings, presented in Theorem 4, demonstrate that the inclusion of
self-connection architectures bolsters structural stability. This stands in stark contrast to conventional
SNNs, which, as proven in Theorem 1, exhibit structural instability as a bifurcation dynamical
system. Consequently, our work establishes theoretically that adding self-connection architecture
provides a viable means for SNNs to sidestep the functional perturbations they may encounter.
Besides, our theoretical results show the effect of self-connection on withstanding perturbations
since the higher-order implementation can be regarded as a Taylor approximation to the complex
self-connection function. This reframes the challenge of assessing structural stability in SNNs as a
mathematical problem with quantifiable properties.

On the other hand, we investigate the structural stability, or equally qualitative behaviors of
bifurcation solutions by adding small perturbations (to be exact polynomial perturbations). Our
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objective is to quantify stable bifurcation solutions as a metric for a stable structure. Notice that
added perturbations here are some functions, as opposed to parameter adjustments (Carlson et al.,
2013; Kim and Sejnowski, 2021). In other words, when one examines the structural stability of
a system, it is better to add perturbation functions to the bifurcation solutions rather than making
adjustments to the bifurcation parameters or other factors. It is crucial to differentiate between
structural stability, Lyapunov stability (which concerns perturbations in initial conditions for a fixed
system), and algorithmic stability (which characterizes perturbations in training sets for specific
learning algorithms). Therefore, structural stability is an inherent property of a system, independent
of the input. Unfortunately, the upper and lower bounds of H(n) remain elusive for tightening the
generalization bounds because these bounds are closely tied to the functional complexity of the SNN
model itself, but indirectly linked to the learning procedure.

In conjunction with the typical learning theory, it is imperative for applicants to both minimize
empirical errors and avoid structural instability in the training phase. Nevertheless, optimizing the
latter during the learning process remains a challenging endeavor. There is potential in devising
technologies (Bi et al., 2024) related to structural stability, enabling SNNs to escape from a structurally
unstable system and deliver a novel paradigm of min

∑
i∈[ND] I(h(xi) ̸= yi)+λK(H), where (xi, yi)

denotes a pair of training instances and K is a regularizer that indicates the structural stability (Sun
and Zhou, 2018). In future work, it is attractive to further verify the effects of this paradigm.

5. Spiking Neuron Model with Stochastic Excitation

As discussed in Subsection 3.2, it is beneficial for SNN learning to make the firing capacity of firing-
reset mechanisms adaptive to the data or environment. An intuitive way is to render ufiring learnable,
replacing the pre-given and fixed value. Formally, one has ∂sk/∂ufiring = ∂fe(uk)/∂ufiring. However,
as per Eq. (2), fe(uk(t)) is non-differentable at the timestamps where the membrane potential exceeds
the firing threshold and is reduced to the reset voltage. This makes direct optimization of ufiring
with gradients challenging. Several efforts have been made to explore alternatives for ufiring. Huh
and Sejnowski (2018) replaced ufiring with a gate function that induces gradual areas, enabling
differential spiking dynamics. In a similar vein, Rathi and Roy (2020) employed another network
model to optimize both membrane leak and firing threshold, allowing ufiring to be trained using
typical back-propagation algorithms.

This section introduces the stochastic spiking neuron model. In contrast to the conventional
studies that take deterministic firing-reset computing, the stochastic spiking neuron fires spike by
means of a calculable probability p(u) with respect to the membrane potential uk(t) and firing
threshold ufiring at time t, so that the firing-reset mechanism including ufiring can be adjusted by p(u).

5.1 Stochastic Spiking Neuron Model and Neural Network

Formally, we have the stochastic spiking neuron model as follows

Integration : τm
∂uk(t)

∂t
= −uk(t) + τr

M∑
j=1

WkjIj(t)

Stochastic Excitation : sk(t) = f stoc
e (uk(t)) ∼ Bernoulli(p(u))

Resetting : uk(t) = (1− sk(t)) · uk(t) + sk(t) · ureset ,

(30)
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where k ∈ [N ]. The excitation probability p(u) endues the firing-reset mechanism with stochasticity.
This work provides various formations for p(u) as follows:

Linear : plinear(u(t)) =
ufiring − u(t)

ufiring − ureset
,

Exponential : pexp(u(t)) = exp

(
u(t)− ufiring

σ · (u(t)− ureset)q

)
,

Heaviside-like : pH(u(t)) =

exp

(
u(t)− ufiring

σ · (u(t)− ureset)q

)
, if uθ ≤ u(t) < ufiring ,

0 , if ureset ≤ u(t) < uθ ,

(31)

in which σ is a scaling hyper-parameter concerning ureset, the superscript q > 0 determines the
curvature of function p(u), and uθ induces a truncation where no stochasticity if u(t) is smaller than
the truncation threshold uθ. We define an excitation probability threshold pθ ∈ (0, 1], satisfying that

σ ln pθ =
uθ − ufiring

(uθ − ureset)q
.

By regulating pθ, we can limit the firing possibility of stochastic spiking neurons. In this work,
we recommend using the Heaviside-like function as pθ → 0 corresponds to pexp(t) and the whole
integration-and-firing process degenerates into the conventional discrete-LIF model when pθ = 1.
We will display the recommended values and effect of pθ in Table 3 and Figure 9 , respectively, by
conducting real-world experiments.

Provided Eq. (30), we can establish a fully-connected feed-forward SNN with stochastic excita-
tion. The feed-forward procedure with L spiking layers can be listed as follows:

s(0)(t) = I(t) and u(0)(0) = 0 , for t ∈ [T ] , l ∈ [L] ,

τm
du(l)(t)

dt
= −u(l)(t) + τrfagg(s

(l−1)(t)) ,

s(l)(t) ∼ Bernoulli
(
p(l)

(
u(l)
))

with p
(l)
k

(
u
(l)
k

)
∼ Eq. (31) for k ∈ [Nl] ,

u(l)(t) = (1− s(l)(t))⊙ u(l)(t) + s(l)(t) · ureset ,

o(t) = s(L)(t) ,

(32)

where Nl denotes the number of spiking neurons in the l-th layer, W(l) is the connection weight
matrix in the l-th layer, o is the final output vector of the concerned model, and ⊙ indicates
the Hadamard product. Eq. (32) provides a standard procedure for forecasting multivariate spike
sequences, i.e., inputting spike sequences and then outputting spike sequences.

It is worth noting that the proposed stochastic neuron model is a fundamental component of SNN
learning; thus, can be used with various architectures, including the self-connection architecture
discussed in Section 4. The feed-forward and back-propagation procedures follow the respective
calculation processes of each module. Besides, if one considers handling the neuromorphic datasets
that receive spike sequences but yield a comprehensive prediction, we can decode the spike sequence
s(L) or o in the last layer as the prediction (Pillow et al., 2005), denoted by y = Decoder(o(1 : T )).
Alternatively, we can adopt a parametric approach, for instance, by counting the output spikes with a
Poisson distribution, as introduced in Section 3.
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Key Ideas of Stochastic Excitation. The motivation of stochastic excitation is to enhance the
adaptivity of firing-reset mechanisms. We attempt to tackle this challenge by probabilizing the
firing-reset mechanism so that a spiking neuron fires spikes by means of a calculable probability
function. According to Eq. (31), a lower injection ratio or sampling density would lead to a lower
excitation probability value. In this case, the concerned spiking neuron still has a certain excitation
probability of being activated even though the integrated membrane potential does not reach the
firing threshold. Thus, stochastic excitation is an effective way to avoid the issue of “dead neurons”.

We also show that the stochastic spiking neuron model allows gradient calculations since the
expectation derivatives of spike excitation functions are non-asymptotic and unbiased in the next part.
Consequently, developers have the flexibility to apply SNNs with stochastic excitation across a range
of datasets and even employ various neural encoding techniques without the need for meticulous
hyper-parameter fine-tuning. Subsection 5.2 delves into the expressive power of using a stochastic
spiking neuron model. Besides, the excitation probability governs the number of neurons participating
in each epoch of training, resulting in multiple spiking subnetworks composed of the neurons that
survived throughout training. The ensemble of these spiking subnetworks may serve to counter
overfitting and improve the generalization performance of SNNs. We investigate the generalization
of the spiking neuron model in Subsection 5.3.

Stochastic Error Back-Propagation. We start the stochastic back-propagation algorithm for SNN
training on the regression tasks. Let o(t) ∈ {0, 1} denote the output vector of an L-layer SNN
with stochastic excitation at time t for t ∈ [T ], and correspondingly ô(t) is the target vector at
time t provided input spike sequence I ∈ {0, 1}M×T where I(t) ∈ {0, 1}M . Thus, the temporal-
accumulated error in a discrete-time interval [1 : T ] can be formulated by

E =
T∑
t=1

E(t) =
T∑
t=1

L (ô(t),o(t)) , (33)

where L denotes the loss function, such as the least square loss and 0-1 loss functions. For t ∈ [T ],
we have

∂E(t)

∂W(l)
=

∂L (ô(t),o(t))

∂W(l)
=

t∑
t′=1

∂δ(t)

∂s(l)(t′)︸ ︷︷ ︸
global

· ∂s
(l)(t′)

∂u(l)(t′)︸ ︷︷ ︸
post-synaptic

· ∂u
(l)(t′)

∂W(l)︸ ︷︷ ︸
pre-synaptic

, (34)

where δ(t) = L (ô(t),o(t)). Notice that the derivative in Eq. (34) consists of three terms, i.e., the
global, post-synaptic, and pre-synaptic derivatives.

The global derivative contains two back-propagation pipelines, that is, temporal-wise and layer-
wise propulsions that correspond to

t+1∏
t′′=t′+1

∂s(l
′)(t′′)

∂s(l′)(t′′ − 1)
and

L∏
l′=l+1

∂s(l
′−1)(t′)

∂s(l′)(t′)
, respectively. (35)

The post-synaptic derivative of Eq. (34) indicates the remediation of the discontinuous and
non-differential firing phase. In conventional SNNs training algorithms, the derivative of firing
function Heaviside(u(t)− ureset) is approximated by a smooth surrogate function (Li et al., 2021).
Here, we leverage the post-synaptic derivative from the perspective of energy back-propagation. It
is observed that the pre-synapse receives fagg(s

(l−1)(t)) at time t, and then the post-synapse fires
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Table 2: Post-synaptic computations.
Feed-forward Post-synaptic functions

Surrogate Gradients s = Heaviside(u− ureset) smooth functions based on the distance between u and ufiring

SLAYER s = Heaviside(u− ureset)
probability density function

ρ(u) = α exp(−β|u− ufiring|), for α, β ∈ R

Stochastic Gradients
(this work)

s ∼ Bernoulli(p(u)) pH(u) =

 exp

(
u− ufiring

σ · (u− ureset)q

)
, if uθ ≤ u < ufiring ,

0 , if ureset ≤ u < uθ ,

spikes according to the excitation probability p(u). In the whole procedure, the concerned neuron
receives the pre-synaptic signals fagg(s

(l−1)(t)), consumes the integration operations, and then fires
the output according to p(u); the former two correspond to the pre-synaptic derivative and the latter
results in the post-synaptic derivative. Further, we obtain the energy rate as

∂p(u)ufiring

∂u
=

∂p(u)

∂u
ufiring .

Inspired by this recognition, we can replace the binary spike s(l) by the corresponding excitation
probability p(l)(u(l)), and thus the post-synaptic derivative of Eq. (34) becomes

∂s(l)
(
u(l)
)

∂u(l)
←

∂p(l)
(
u(l)
)

∂u(l)
. (36)

From a computational perspective, we have the following conclusion.

Theorem 8 The post-synaptic derivative of the stochastic spiking neuron model is asymptotic and
unbiased as uθ = ureset. For specificity,

• Non-asymptotic. The post-synaptic derivative ∂p(l)/∂u(l) is exactly differential as uθ = ureset.

• Unbiased. One has

E

[
∂s(l)

∂u(l)

]
=

∂p(l)

∂u(l)
.

Theorem 8 shows that the post-synaptic error computation proposed in Eq. (34) is non-asymptotic and
unbiased, which provides a theoretical guarantee for the gradient calculations of stochastic spiking
neurons. We also compare our method with conventional post-synaptic computations. Table 2 lists the
post-synaptic function of conventional surrogate gradients (Li et al., 2021), SLAYER (Shrestha and
Orchard, 2018), and our proposed stochastic neuron model. Figure 6 illustrates the feed-forward and
back-propagation computations. From these charts, conventional surrogate gradients and SLAYER
approximate the Dirac delta function (derivatives of non-differentiable firing functions) using the
smooth function (asymptotic and biased) and probability density function (asymptotic and unbiased),
respectively. However, our proposed stochastic error computation is almost non-asymptotic and
unbiased, since the stochastic formulation naturally relaxes the derivatives (red curves) of firing
functions from a Dirac delta function to a pseudo-step function (expectation derivative). Limited to
space, we move the detailed proof and discussions about Theorem 8 into Appendix J.
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Figure 6: Post-synaptic computations of conventional surrogate gradients, SLAYER, and ours.

The pre-synaptic derivative of Eq. (34) can be calculated by

∂u(l)(t)

∂W(l)
= REPMAT

(
s(l−1)(t), Nl

)⊤
, (37)

where REPMAT(s, Nl) returns a row array containing Nl copies of the column vector s.
The above steps build the stochastic back-propagation algorithm for the SNN training on the

regression task. Substituting Eqs. (35), (36), and (37) into Eq. (34) and then summing up Eq. (34)
and Eq. (33), we can obtain the final gradients with respect to Wl.

For training the neuromorphic classification tasks, the error supervised by the target label y can
be formulated by Ec = L (Decoder(o(1 : T )), y). Thus, the gradient with respect to Wl becomes

∂Ec

∂Wl
=

∂L (Decoder(o(1 : T )), y)

∂Decoder(o(1 : T ))

[
T∑
t=1

∂Decoder(o(1 : T ))

∂o(t)

∂o(t)

∂W(l)

]
with 

∂L (Decoder(o(1 : T )), y)

∂o(t)
=

∂L (Decoder(o(1 : T )), y)

∂Decoder(o(1 : T ))

∂Decoder(o(1 : T ))

∂o(t)
,

∂o(t)

∂Wl
=

t∑
t′=1

[
∂o(t)

∂s(l)(t′)

∂s(l)(t′)

∂u(l)(t′)

∂u(l)(t′)

∂W(l)

]
.

For the test time, it is not feasible to randomly excite the spiking neurons since the current
weights have been scaled-down versions of the trained weights learned from the stochastic back-
propagation algorithm, as well as common-used random algorithms like dropout (Srivastava et al.,
2014), dropconnect (Sakai et al., 2019), and random ensemble (Zhou, 2012). Thus, we employ the
deterministic model for prediction or classification at the test time.
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5.2 Expressivity of Stochastic Spiking Neurons

This subsection investigates the expressive powers of SNNs equipped with stochastic spiking neurons.
The fist conclusion is about the universal approximation.

Theorem 9 Let K ⊂ RM be a bounded set. Provided l ∈ N+, if the excitation probability function
p(u) is l-times differentiable with respective to u(t) on K and satisfies

0 <

∣∣∣∣∫
K
Drp(u) du

∣∣∣∣ <∞ , for any r ∈ [l] ,

and W ∈ RN×M , w ∈ RN×1, then the set of functions f(·, t) : K → R expressive by a two-layer
SNN equipped with stochastic spiking neurons, which is of the form

f(·) = Es

[
w⊤s(·, t)

]
,

sk(·, t) = p(u(·, t), t) , where k ∈ [N ] and s = (s1, . . . , sN ) ,

u(·, t) = Wk,[M ]

∫ t

t′
exp

(
− t′′ − t′

τm

)
I(t′′) dt′′ − 1

τm
exp

(
− t− t′

τm

)
sk(t

′) ,

(38)

is dense in C0(K,R).

Theorem 9 shows that a two-layer SNN equipped with stochastic spiking neurons is a universal
approximator in the sense of statistical expectation, implying that the proposed stochastic excitation
mechanism has a powerful expressive power given apposite or sufficiently large t.

Next, We present the following theorem to show the approximation complexity advantages of the
stochastic spiking neuron model over other neuron models.

Theorem 10 For any ϵ > 0 and input dimension d ∈ N+, there exist a probability measure µ and a
function g ∈ C

(
(R+)M , [0, 1]

)
such that the followings hold:

(i) The SNN equipped with only one hidden stochastic spiking neuron fstoc can approximated g
well, i.e., Eµ [fstoc(x)− g(x)]2 < ϵ, where x ∈ (R+)M ;

(ii) Function g cannot be well approximated by a SNN unless there are at least Θ(M5/4) hidden
LIF neurons;

(iii) Function g cannot be well approximated well by a fully-connected feed-forward ANN unless
there are at least (M − 6)/2 hidden sigmoidal neurons.

Theorem 10 shows the parameter complexity advantages of the proposed stochastic spiking neuron
over conventional spiking (including LIF) and artificial neuron models for approximating some con-
tinuous function on spike timing sequences. In detail, conventional MP and LIF neurons approximate
function g well with at least a polynomial number of hidden spiking neurons and a linear number of
hidden neurons, respectively, whereas g can be approximated well by the proposed stochastic spiking
neurons within a constant number of neurons (only one sometimes). The full proof of Theorem 10
can be accessed from Appendix K.
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5.3 Generalization Bounds for Stochastic Spiking Neurons

This subsection investigates the generalization of SNNs with the stochastic excitation mechanism.
For simplicity, we here focus on binary classification where Y = {−1,+1}. As introduced above,
SNNs randomly activate spiking neurons according to the possibility indicator s(l) that belongs
to a Bernoulli distribution with probability p(l). For convenience, we here omit the superscripts
and subscripts as possible. Let W be the connection weight space for SNNs, and D denotes the
underlying joint distribution over input and output space X × Y . Thus, we establish the function
space as FW = {f(w,X) | w ∈ W,X ∈ X}.

Our goal is to find an optimal w∗ ∈ W so as to minimize the following expected error

E(f) = E(X,y) [L (f(w,X), y)] ,

where L denotes the loss function, such as the least square loss and 0-1 loss functions. Provided the
training data set Sn = {(Xi, yi) ∈ X × Y}i∈[n] drawn from D, we define the empirical error as

Ê(f) =
1

n

n∑
i=1

L (f(w,Xi), yi) ,

where Ê(f) is an abbreviation of Ê(f ;Sn,P) and the probability matrix

Pkt =

exp

(
uk(t)− ufiring

σ (uk(t)− ureset)q

)
, if uθ ≤ u(t) < ufiring ,

0 , if ureset ≤ uk(t) < uθ ,

(39)

where k indicates the kth spiking neuron and the membrane threshold uθ is relative to the excitation
probability threshold pθ ∈ (0, 1]. Let pk is the kth row vector of P.

Here, we study the gap between E(f) and Ê(f) and present the generalization bound as follows:

Theorem 11 If the loss function L is bounded by C > 0, then for any δ > 0, the following holds
with probability at least 1− δ

E(f) ≤ Ê(f) + 2Rn(L ◦ FW) + C

√
ln(2/δ)

n
, (40a)

E(f) ≤ Ê(f) + 2R̂n(L ◦ FW , Sn,P) + 3C

√
ln(2/δ)

n
, (40b)

where L ◦ FW is a composite function space in which h(w,Xi, yi,pi) = L (f(w,Xi,pi), yi)
for h ∈ L ◦ FW , Rn(L ◦ FW) and R̂n(L ◦ FW , Sn,P) denote the expected and empirical
Rademacher complexities of L ◦ FW , respectively, provided the Rademacher variable ϵi,

Rn(L ◦ FW) = ESn∈D,P

[
R̂n(L ◦ FW , Sn,P)

]
,

R̂n(L ◦ FW , Sn,P) = Eϵ

[
sup

h∈L ◦FW

(
1

n

n∑
i=1

ϵih(w,Xi, yi,pi)

)]
.

(41)
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Theorem 11 shows the generalization bounds concerning the Rademacher complexity. In contrast to
the conventional works where the generalization performance is mostly affected by training samples,
Theorem 11 shows that the generalization bounds are relevant to not only training samples but also
the excitation probability in Eq. (41). Limited to space, the proof sketch and process of Theorem 11
are moved to Appendix L.

Next, we will disclose that the main benefit of introducing stochastic spiking firing into SNNs
lies in a sharp reduction on the Rademacher complexity of multi-layer stochastic neurons. Now, we
present the second conclusion as follows:

Theorem 12 Let Fone
W denote the function space of L-layer stochastic neurons. If ureset = 0,

∥Wl∥2 ≤ Cl for l ∈ [L], and ∥X∥2 ≤ CX for X ∈ X , we have

Rn(L ◦ FW) ≤ Cn Rn(FW) ≤ (Cn)
LCX√
n

∏
l∈[L]

Cl

 (pmax)
(L+1)/2 , (42)

where pmax = maxi∈[n],l∈[L]{1−max{p(l,i), pθ}} ∈ (0, 1) and Cn is a universal constant.

Theorem 12 shows that the Rademacher complexity of stochastic neurons can be upper bounded by an
exponential function relative to the excitation probability, implying that it is promising to reduce the
Rademacher complexity Rn(L ◦FW) and Rn(FW) exponentially by exploiting random algorithms
led by stochastic excitation in Eq. (30). The sharp reduction of Rademacher complexity is caused
by random algorithms related to the excitation probability function in Eq. (30). Besides, Eq. (42)
is dependent on the number of training samples, the norm of connection weights, network depth
(number of layers), and excitation probability threshold, but irrelevant to the number of weights, input
dimension, and network width (number of units). If one sets pθ = 1, that is, any membrane potential
may generate spikes, then our bound can be relaxed to the conventional studies in ANNs (Wan et al.,
2013). Limited to space, the proof sketch and process of Theorem 12 are moved to Appendix M.

Notice that the combination of Theorem 11 and Theorem 12 provides the first explicit general-
ization bound for SNNs, to the best of our knowledge. Recall the bound in Eq. (42), pmax is closely
related to Pkt as well as spike dynamics. If one considers the sparsity of Pkt, the upper bound may
be further reduced. It is an attractive issue to be studied in the future.

5.4 Discussions about Stochastic Excitation Mechanisms

The integration of stochastic elements into the spiking neuron model is an attractive topic confronted
in machine learning and neural computation, which stems from two fundamental recognitions: (1)
the inherent stochastic nature of the brain where there is certain randomness in the opening or closing
of membrane channels due to various neural factors (Markram and Tsodyks, 1996); (2) the capacity
of stochasticity to empower neuromorphic systems in solving creative problems (Habenschuss
et al., 2013). Conventionally, one common approach for introducing stochasticity in SNNs is by
incorporating noise into the spiking neuron model (Maass, 2014). This allows SNNs to engage
in probabilistic inference via sampling (Faisal et al., 2008). The inspiration behind this approach
originally arose from the observation that synaptic vesicles are released even without a presynaptic
spike (Markram and Tsodyks, 1996), providing an additional source of inherent noise. From the
computational perspective, noisy SNNs work like marginalizing the noise to yield a regularizer.
Some valuable consequences paved the way for studying the computational ability and learning
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performance of neuromorphic systems guided by noisy SNNs (Vandesompele et al., 2019). An
alternative implementation is to build a generative model by deriving a synaptic update rule that
optimizes the likelihood of post-synaptic firing by gradient ascent at firing times (Pfister et al., 2006)
or other gradient estimators (Rezende and Gerstner, 2014; Kajino, 2021). However, both probabilistic
inference through sampling and likelihood optimization usually result in considerable storage and
computation consumption, which contradicts the high-performance computing capabilities that SNNs
are proud of.

This section explores an alternative approach for infusing stochasticity into SNNs, i.e., spike
excitation by means of a calculable probability. In contrast to adding noise, the proposed neuron
model utilize the stochasticity inside spiking neurons to enrich the flexibility of the firing-reset
mechanism and improve the learning procedure of SNN. This idea also comes from the intuition of
preventing the complex co-adaptation of feature detectors and encouraging the cortex to be active.
There are many benefits.

(1) Coinciding with Biological Facts. The conventional spiking neuron model establishes upon the
post synaptic potential assumption that the post synapse would integrate the membrane potential
modified by the neurotransmitters, and the membrane channels would deterministically open only if
the integrated potential exceeds a threshold. However, in neuroscience, stochasticity is prevalent in
both spike generation and transmission processes, which often corresponds to the unreliability of
synapses caused by the inherently stochastic processes on the molecular level, trial-to-trail variability,
noise in receiving spike sequences, etc. Studies have intriguingly observed that there is a certain
randomness in the opening or closing of membrane channels due to various neural factors (Maass,
2014), which means that the neuron may be activated even though the integrated membrane potential
has not exceeded the firing threshold. Besides, we also found that a spike of a pre-synapse causes a
release of a vesicle filled with neurotransmitters with a relatively low probability around 0.1 (Zhang
and Zhou, 2021; Wu et al., 2024). Thus, it is reasonable to conjecture that stochasticity is inherent in
the process of spike transmission and firing within neurons. A clear signal is that there is a mixture of
determinism and randomness in the firing mechanism, i.e., the membrane potential will accumulate
at the post-synapse and fire after reaching a certain threshold, while there are also cases of stochastic
excitation. Inspired by this insight, we resort to the stochastic excitation mechanism by exploiting an
excitation probability function.

(2) Enhancing Approximation Ability. The stochastic excitation function operates on the firing
process of spiking neurons over a time period, thus making it possible for the neuron to transmit spikes
even if the membrane potential has not yet reached the firing threshold. This manner prompts the
cortex to be more excited to learn knowledge and mitigates the occurrence of “dead neurons” (Bohte
et al., 2002) in the training procedure. As shown in Figure 7, there is a notable 25.64% increase
on the number of excitation spikes from stochastic spiking neurons to the discrete-LIF neurons.
In addition, by utilizing the excitation probability threshold pθ (refer to Table 3 for recommended
values), the level of cortical activity can be controlled. Consequently, the proposed SNNs with
stochastic excitation can adeptly approximate the expressive functions of the conventional neural
network models by regulating pθ. Subsection 5.2 theoretically shows the approximation properties
and advantages of SNNs with stochastic excitation over classical SNNs and even ANNs.

(3) Mitigating Overfitting. The stochastic excitation function temporarily removes the spiking
neurons from the network, along with the corresponding incoming and outgoing connections, by
means of a calculable possibility. Prospectively, this manner leads to a lot of spiking subnetworks that
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consist of the neurons that survived the training time. The ensemble of these spiking subnetworks may
work against overfitting, thus improving the generalization performance of SNNs. Relatively, during
testing, we employ the deterministic model for prediction or classification, with the current weights
being scaled-down versions of the trained weights. This workflow of stochastic spiking neurons is
reminiscent of the dropout (Srivastava et al., 2014) and random ensemble (Zhou, 2012) techniques
in ANNs. Figure 9 will showcase a similar effect on the performance of SNN-Dropout (Sakai
et al., 2019) and SNNs equipped with stochastic spiking neurons on N-MNIST. Additionally, the
combination of Theorem 11 and Theorem 12 confirms this conjecture, wherein the sharp reduction of
Rademacher complexity is attributed to random algorithms driven by stochastic excitation in Eq. (30).
Therefore, the stochastic excitation mechanism provides a computationally cheap and remarkably
effective method to reduce overfitting and improve generalization performance in SNNs.

The Explicit Generalization Bounds. A comprehensive understanding of SNNs necessitates
insights into their expressive power (including approximation ability, computational efficiency, etc.)
and generalization performance. Past decade has emerged some studies on the expressivity and
computational efficiency of SNNs (Tang et al., 2017; Chou et al., 2019; Zhang and Zhou, 2022).
However, to our knowledge, there is no theoretical investigation to assess the explicit generalization
bounds of SNNs, i.e., whether and to what extent a trained SNN performs well on data that has never
been seen before. This is a challenging endeavor for two main reasons. Firstly, it is intuitively clear
that there are great differences in information processing between ANNs and SNNs, as different
computations usually lead to different expressivity and generalization abilities. Thus, there is limited
applicability from classical ANN learning experiences. Secondly, existing generalization studies
of ANNs have largely been established on representation learning. This primarily revolves around
training a neural network model from a pertinent feature space, followed by attempts to bind the
complexity of the hypothesis space through the construction of relevant subset representations using
specific network architectures and connection weights (Zhou, 2021). The representational progresses
work on the norm-based (Neyshabur et al., 2015), kernel-based (Jacot et al., 2018; Zhang et al.,
2024b,a), and margin-based (Lyu et al., 2022) capacity control. This work advocates the construction
of the feature space itself of neural networks rather than the training of a neural network model
from a concerned feature space. Following this thought, we probablize the spiking neuron model
and formally describe the expressive hypotheses of SNNs in Theorem 9. This opens the door
to establishing a generalization bound for SNNs via the feature space construction driven by the
probability excitation function.

The Uncertainty of Stochastic Excitation. The uncertainty is inherent for SNNs despite the
deterministic modeling of spiking neurons. The common-used source of predictive uncertainty of
SNNs arises not only from noisy data but also from the randomness and incompleteness of neural
encoding techniques discussed in Section 3. While encoding non-spiking data, such as static images,
is crucial for training, it can introduce information loss and encoding order-induced randomness,
leading to what is commonly referred to as data uncertainty or encoding uncertainty outside the
model. To address this, analysts often resort to employing practical techniques such as adversarial
learning, statistical regularization, or rudely extending sequence lengths.

In contrast, our focus here lies on the model uncertainty, which investigates the stochastic nature
of the model itself. The model uncertainty is led by the stochastic excitation mechanism controlled by
the excitation probability p(u) in Eq. (30). Thus, the generalization bound as well as the Rademacher
complexity in Eq. (42) is relative to excitation probability p(u). Informally, the randomness brought
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by p(u) leads to hypothesis discrepancy, which coincides with the intuition of preventing overfitting.
In Eq. (42) of Theorem 12, we roughly measure the upper bound corresponding to the worst case of
the hypothesis complexity caused by p(u) via truncating the distribution tail of p(u). We conjecture
that this bound may be further tightened by exploiting the spiking computation that is sparse in time
and space, which is attractive to be further studied in the future.

Drawbacks. One drawback of the stochastic spiking neuron model lies in its increased training
complexity, empirically requiring 20-30 more training epochs than the discrete LIF neuron. We
conjecture that this circumstance may be attributed to redundant weight updates since the stochasticity
in the model can lead to inapposite gradients even with opposite directions at each training epoch. A
feasible way to mitigate this issue is to add regularization or normalization techniques.

Another consideration pertains to the length of neural encoding. While recent years have seen
significant progress in few-shot neural encoding for SNNs (Kheradpisheh et al., 2018), training an
SNN equipped with stochastic spiking neurons still requires a relatively long sequence of spikes,
around 300-400 ms, as indicated in Table 3. This is due to two primary reasons. Firstly, when
one converts a static image into a spike sequence, there exists an inherent gap between the target
static image and the resulting spike sequence. A longer encoding length may help alleviate the
encoding loss; thus, it is still an argument between the longer and few-shot encoding. Secondly, the
stochastic excitation mechanism introduces model uncertainty. A longer spike sequence enables each
stochastic spiking neuron to fire a significant number of spikes during training, facilitating ample
weight updates while reducing variance attributable to stochasticity. .

Future Issues. Lastly, it is imperative to emphasize that the stochastic formation of the proposed
spiking neuron model shown in Eq. (30) is not confined to its current implementation. This encom-
passes various aspects, including the feed-forward architecture, the error back-propagation through
time algorithm, the Heaviside-like possibility function, etc. Exploring alternative and viable schemes
remains a valuable avenue for further research.

6. Experiments

This section conducts experiments on several datasets to evaluate the performance of the proposed
methods. For convenience, we employ the post-fixes, that is, ‘SNN∗’ and ‘StocSNN’, to denote SNNs
equipped with the self-connection architecture and stochastic excitation mechanism, respectively.
Besides, the symbol of ‘StocSNN∗’ denotes the SNN equipped with both proposed modes. Since
the self-connection architectures have relatively larger parameter complexity. Due to this, we here
refrain from deploying self-connection architectures with large-scale parameters.

6.1 Configurations

Here, we utilize the architectures of MLP (Shrestha and Orchard, 2018) with 500-500 hidden neurons
and VGG-16 (Simonyan and Zisserman, 2014) with 4096-1024-1024 hidden neurons, denoted as
-500-500- and VGG-16 (4096-1024-1024), respectively. For the regression paradigm, we employ the
nonlinear mapping Decoder(o(1 : T )) = sigmoid(o(1 : T )×wo) as the decoder of SNNs, where
o(1 : T ) ∈ Rnlabel·T , nlabel denotes the number of labels, and wo ∈ RT×1 is the weighted vector. For
the classification paradigm, the output (i.e., classification label) of SNNs is the one with the greatest
spike count. Notice that we do not add the refractory period to SNNs. The typical configuration
values of the proposed SNNs for the conducted datasets are listed in Table 3. The contenders
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comprise the conversion-based SNNs (Kugele et al., 2020) and direct-training algorithms (Zhang and
Li, 2019), including surrogate gradients (Li et al., 2021) and random algorithms (Sakai et al., 2019).

Table 3: Hyper-parameter setting of the proposed SNNs on image recognition.

Hyper-parameters Value MNIST Fashion
-MNIST EMNIST CIFAR-10 CIFAR-100 N-MNIST CIFAR10

-DVS
DVS128
-Gesture

Batch Size 32 32 32 128 128 64 64 32
Encoding Length T 300 400 400 300 300 300 400 300

Expect Spike Count (True) 100 100 140 100 150 80 100 100
Expect Spike Count (False) 10 10 0 10 0 5 10 10

Firing Threshold 10 10 10 10 10 10 10 10
Learning Rate η 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Excitation Probability Threshold pθ 0.5 0.55 0.55 0.5 0.5 0.6 0.6 0.55
Maximum Time 300 ms 400 ms 400 ms 400ms 400ms 300 ms 400ms 400ms

Membrane Time τm 0.2s 0.2s 0.2s 0.2s 0.2s 0.1s 0.1s 0.1s
Time Constant of Synapse τs 8 ms 8 ms 8 ms 8 ms 8 ms 8 ms 8 ms 8 ms

Time Step τs 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms

The conducted datasets can be divided into two categories: (1) The neuromorphic data, used
for regression tasks. (1a) The Neuromorphic-MNIST (N-MNIST) data set1 (Orchard et al., 2015)
is a spiking version of the original frame-based MNIST data set. Each example in N-MNIST was
converted into a spike sequence by mounting the ATIS sensor on a motorized pan-tilt unit and having
the sensor move while it views MNIST examples on an LCD monitor. It consists of the same 60,000
training and 10,000 testing samples as the original MNIST data set and is captured at the same visual
scale as the original MNIST data set (28 × 28 pixels) with both “on” and “off” spikes. (1b) The
CIFAR10-DVS data set (Li et al., 2017) is an event-stream conversion of CIFAR-10 by converting
10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS) and a
repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of
frame-based images by moving the camera, the RCLS image movement generates rich local intensity
changes in continuous time, which are quantized by each pixel of the DVS camera to generate events.
(1c) The DVS128-Gesture data set (Amir et al., 2017) comprises 1,342 instances of a set of 11 hand
and arm gestures, which are grouped in 122 trials collected from 29 subjects under 3 different lighting
conditions; the gestures include hand waving (both arms), large straight arm rotations (both arms,
clockwise and counterclockwise), forearm rolling (forward and backward), air guitar, air drums, and
an “Other” gesture invented by the subject, where each gesture lasts about 6 seconds; the 3 lighting
conditions are combinations of natural light, fluorescent light, and LED light, which was selected to
control the effect of shadows and fluorescent light flicker on the DVS128 camera. During each trial,
one subject stood against a stationary background and performed all 11 gestures sequentially under
the same lighting condition. (2) The static images with neural encoding are used for classification
tasks. (2a) The MNIST handwritten digit data set2 comprises a training set of 60,000 examples and
a testing set of 10,000 examples in 10 classes, where each example is centered in a 28× 28 image.
(2b) The Fashion-MNIST data set3 consists of a training set of 60,000 examples and a testing set
of 10,000 examples. Each example is a 28 × 28 grayscale image associated with a label from 10
classes. (2c) The Extended MNIST-Balanced (EMNIST) (Cohen et al., 2017) data set is an extension
of MNIST to handwritten, which contains handwritten upper & lower case letters of the English

1. https://www.garrickorchard.com/datasets/n-mnist
2. http://yann.lecun.com/exdb/mnist/
3. https://www.kaggle.com/zalando-research/fashionmnist
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Table 4: The comparative performance of the conducted SNNs on neuromorphic data.
Datasets Models Architectures (%) Accuracy

N-MNIST

SNN-BP 2× 28×28-800-10 98.78
SKIM (Cohen et al., 2017) 2× 28×28-10000-10 92.87

HM2-BP 2× 28×28-800-10 98.84 ± 0.02
SLAYER 2× 28×28-500-500-10 98.89 ± 0.06

SNN-Dropout (Sakai et al., 2019) MLP with 40% drop rate 98.17
CIFAR-Net Small CIFAR-Net without NeuNorm 99.44
CIFAR-Net Small CIFAR-Net with NeuNorm 99.53

SNN∗ 2× 28×28-500-500-10, n = 1 99.17 ± 0.12
StocSNN 2× 28×28-500-500-10 99.57 ± 0.10
StocSNN∗ 2× 28×28-500-500-10 , n = 1 99.33 ± 0.09‘

CIFAR10-DVS

Gabor-SNN (Sironi et al., 2018) – 24.50
HAT (Sironi et al., 2018) – 52.40
LIAF (Wu et al., 2021) – 71.70

CIFAR-Net Small CIFAR-Net without NeuNorm 58.10
CIFAR-Net Small CIFAR-Net with NeuNorm 60.50

SNN-Dropout CNN with 40% drop rate 64.33
STBP-tdBN ResNet-19 67.80

Dspike (Li et al., 2021) ResNet-18 75.40 ± 0.05
conversion-based SNN (Kugele et al., 2020) – 66.75 ± 0.22

StocSNN VGG-16 (4096-1024-1024) 79.27 ± 0.17

DVS128-Gesture

SNN on TrueNorth (Amir et al., 2017) – 94.59
STBP-tdBN ResNet-19 96.87

conversion-based SNN – 95.68 ± 0.32
StocSNN VGG-16 (4096-1024-1024) 97.12 ± 0.38

alphabet in addition to the digits, and comprises 112,800 training and 18,800 testing samples for
47 classes. (2d) The CIFAR-10 data set (Krizhevsky and Hinton, 2009) consists of 60000 32× 32
color images in 10 classes, with 50000 training images and 10000 test images. (2e) The CIFAR-100
data set is just like the CIFAR-10, except it has 100 classes that are grouped into 20 super-classes,
and each class contains 600 (500 training and 100 testings) images. Each image comes with a “fine”
label (the class to which it belongs) and a “coarse” label (the superclass to which it belongs). Similar
to (Susemihl et al., 2013; Zhang et al., 2021), each static image is transformed as a spike sequence
using Poisson Encoding. For example, we produce a list of spike signals with a formation of 784×T
binary matrices corresponding to the static MNIST image, where T denotes the encoding length, and
each row represents a spike sequence at each pixel.

6.2 Experimental Results on Neuromorphic Data

Table 4 lists a comprehensive comparison of the performance and configurations of the investigated
SNNs on neuromorphic datasets. The top-performing models and their performance are highlighted
in bold. It is observed that SNNs featuring self-connection architectures exhibit superior accuracy
compared to their fully-connected feed-forward counterparts. Additionally, SNNs equipped with
stochastic spiking neurons outperform those without in terms of accuracy. The proposed StocSNN
stands out as the most effective among the competing approaches, achieving the highest testing
accuracy. It is a laudable result for SNNs.

Figure 7 displays the spike raster plots of the general LIF-SNN, SNN∗, StocSNN∗, and StocSNN
on an N-MNIST instance with label 0 at the 50th and 150th epochs. Due to space limitations, we
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Figure 7: Spike raster illustrations of the general LIF-SNN, SNN∗, StocSNN∗, and StocSNN for
handling N-MNIST.

Figure 8: Excitation comparisons between the general LIF-SNN and StocSNN.

present plots for the first hidden layer (consisting of 500 hidden spiking neurons) along with the
corresponding excitation probability images. The x-axis and y-axis denote the time stamps and
dimensions (input channels and neurons), respectively. As indicated in Table 3, we here set pθ = 0.6
for handling N-MNNIST. Limited to the space, we here only show the first-hidden-layer (500 hidden
spiking neurons) plots and the corresponding excitation probability pictures.

In the 50th epoch, StocSNN generates 8307 spikes, representing around a 25.64% increase com-
pared to the 6612 spikes fired by the LIF-SNN. Adding self-connection architectures promotes more
spikes than the LIF-SNN, where SNN∗ and StocSNN∗ produce 7140 and 7611 spikes, respectively,
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Table 5: The comparative performance of the conducted SNNs on static image recognition.
Datasets Models Architectures (%) Accuracy

MNIST

SNN-BP (Lee et al., 2016) 28×28-800-10 98.71
SNN-EP (O’Connor et al., 2019) 28×28-500-10 97.63

HM2-BP (Jin et al., 2018) 28×28-800-10 98.84 ± 0.02
SLAYER (Shrestha and Orchard, 2018) 28×28-500-500-10 98.53 ± 0.04

SNN-Dropout (Sakai et al., 2019) MLP with 50% drop rate 98.23
SNN-DropConnect (Sakai et al., 2019) MLP with 50% drop rate 98.20

SNN-L (Rezaabad and Vishwanath, 2020) 28×28-1000-R28-10 98.23 ± 0.07
SNN∗ 28×28-500-500-10, n = 1 99.02 ± 0.04

StocSNN 28×28-500-500-10 99.11 ± 0.07
StocSNN∗ 28×28-500-500-10, n = 1 98.91 ± 0.03

Fashion-MNIST

HM2-BP 28×28-400-400-10 88.99 ± 0.02
SLAYER 28×28-500-500-10 88.63 ± 0.12

ST-RSBP (Zhang and Li, 2019) 28×28-400-R400-10 90.10 ± 0.06
StocSNN 28×28-500-500-10, n = 1 91.22 ± 0.06
StocSNN 28×28-500-500-10 91.37 ± 0.13
StocSNN∗ 28×28-500-500-10, n = 1 91.31 ± 0.07

EMNIST

eRBP (Neftci et al., 2017) 28×28-200-200-47 78.17
HM2-BP 28×28-400-400-47 84.43 ± 0.09
SLAYER 28×28-500-500-47 85.73 ± 0.16
SNN-L 28×28-1000-R28-47 83.75 ± 0.15
SNN∗ 28×28-500-500-47, n = 1 87.51 ± 0.23

StocSNN 28×28-500-500-47 88.17 ± 0.18
StocSNN∗ 28×28-500-500-47, n = 1 87.54 ± 0.20

CIFAR-10

Converted SNN (Hunsberger and Eliasmith, 2016) VGG-16 (4096-1024-1024) 87.46
TSSL (Zhang and Li, 2020) VGG-16 (4096-1024-1024) 91.41

DIET-SNN (Rathi and Roy, 2020) VGG-16 (4096-1024-1024) 92.43
CIFAR-Net (Wu et al., 2019) Small CIFAR-Net without NeuNorm 89.83

CIFAR-Net Small CIFAR-Net with NeuNorm 93.16
SNN-Dropout CNN with 40% drop rate 96.33

SNN-DropConnect CNN with 40% drop rate 97.23
STBP-tdBN ResNet-19 72.22 ± 0.03

Dspike (Li et al., 2021) ResNet-18 93.66 ± 0.05
StocSNN VGG-16 (4096-1024-1024) 93.74 ± 0.07

CIFAR-100

DIET-SNN ResNet-20 64.07
DIET-SNN VGG-16 (4096-1024-1024) 69.67

Hybrid-SNN (Rathi et al., 2019) – 67.87
RMP-SNN (Han et al., 2020) – 70.09

STBP-tdBN ResNet-19 72.22 ± 0.03
Dspike ResNet-18 73.35 ± 0.14

StocSNN VGG-16 (4096-1024-1024) 74.11 ± 0.54

reflecting increases of 7.98% and 15.11% over the LIF-SNN. In the case of the 150th epoch, StocSNN
generates 9770 spikes, surpassing the 8117 spikes of the LIF-SNN by approximately 20.36%. SNN∗

and StocSNN∗ produce 8820 and 9388 spikes, respectively, indicating increases of 8.66% and 15.66%
over the LIF-SNN.

Furthermore, we compare the generated spikes and corresponding excitation probability pictures
of the general LIF-SNN and StocSNN in Figure 8. Red points record the spikes generated by
StocSNN, while blue points denote the spikes unique to the LIF-SNN, distinct from those in
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StocSNN. It is evident that StocSNN generates more spikes than the discrete LIF-SNN with the same
connection weights (8307 versus 6612, approximately a 25.64% increase).

Additionally, it is observed that the excitation probability values are roughly divided into two
intervals: deterministic spikes (marked in red) and stochastic spikes with excitation probabilities
concentrated around 20% to 2% (marked in green). This coincides with the aforementioned increase
rate (approximately 25.64%). The fluctuation of excitation probability values over training epochs
is also notable, with the ratio of deterministic spikes to stochastic spikes, as well as the stochastic
probability values, diminishing as the training epoch progresses. This aligns with the original
intention behind the stochastic formation, as discussed detailedly in Subsection 5.4.

It is essential to make a clarification that while our proposed methods plausibly lead to increased
firing counts, it has not been confirmed whether more spikes necessarily result in higher accuracy.

6.3 Experimental Results on Static Images

Table 5 presents a comparative analysis of performance (accuracy) and configurations (architectures)
for the investigated SNNs on static images in various classification tasks. The most outstanding
performance is highlighted in bold. Combined with the results in Table 4, it is evident that the
proposed StocSNN consistently outperforms other competing approaches, excelling in both static
image and neuromorphic dataset tasks. This achievement signifies a noteworthy milestone for SNNs.

Table 6: The “mean-variance” of trained connection weights on N-MNIST.
Models (mean, var) of the 1rt hidden layer (mean, var) of the 2nd hidden layer

LIF-SNN (-0.0038, 0.0562) (0.0073, 0.0562)
CNN + LIF-SNN (-0.0979,1.7063) (-0.1806,1.6888)

SNN∗ (-0.0036, 0.0059) (0.0077, 0.0580)
StocSNN (-0.0037, 0.0060) (0.0079, 0.0566)
StocSNN∗ (-0.0036, 0.0059) (0.0078, 0.0578)

6.4 Beyond Accuracy

From Figure 7, it is observed that StocSNN exhibits a higher spike frequency compared to the
general LIF-SNN. This observation leads us to conjecture that the modification of intrinsic structures
encourages an incremental firing rate. Relatively, the firing rates of SNN∗ and StocSNN∗ in the same
layer are significantly different. This suggests that the adaptive eigenvalues of integration operations
play a crucial role, where negative eigenvalues hinder spike excitation, positive ones promote it, and
eigenvalues of zero denote a conservative system.

To verify these conjectures, we compute the mean-variance of connection weights for four trained
SNNs: the general LIF-SNN, CNN+LIF-SNN, SNN∗, StocSNN, and StocSNN∗. The results are
listed in Table 6, where it is believed that similar mean and variance imply the similar distributions of
trained connection weights. We make two significant observations from this table. Firstly, the means
of both two-layer connection weights of LIF-SNN are smaller than those of CNN+LIF-SNN, which
employs the same neural model and different architecture with LIF-SNN. However, the variances of
both two-layer connection weights in LIF-SNN are considerably larger than those in CNN+LIF-SNN.
This observation demonstrates the substantial influence of network architectures on connection
weights, where the distributions (i.e., mean and variance) of trained connection weights are relatively
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Figure 9: The effect of dropout rate and pθ on the performance of SNN-Dropout and StocSNN.

different even using the same neural operations. Secondly, the four investigated models (i.e., LIF-
SNN, SNN∗, StocSNN, and StocSNN∗) showcase similar distributions of trained connection weights.
This suggests that the effects of the trained connection weights of the four SNN models are almost
equivalent. Hence, we can conclude that the improved performance is primarily attributed to the
modification of intrinsic structures, namely, the addition of the self-connection architecture and the
utilization of the stochastic excitation mechanism.

6.5 About the excitation probability threshold pθ

The stochastic spiking neuron model works with an extra hyper-parameter, i.e., the excitation
probability threshold pθ ∈ [0, 1], which regulates the intensity of the firing possibilities of spiking
neurons where pθ = 0 implies no stochasticity in SNNs and pθ = 1 represents the highest firing
possibility even though the membrane potential has not yet exceeded the pre-defined firing threshold.
As mentioned above, the calculable probability function p(u) enables spiking neurons to work with
stochastic connections. It would prompt spike excitation since spiking neurons are likely to fire
before the membrane potential reaches the firing threshold. Using pθ in p(u) would ensure that low
membrane potential does not cause firing to avoid a massive gap between cumulative membrane
potential and firing spikes. Thus, the gap caused by the non-differential post-synaptic computations
can be bridged by random algorithms with an adjustable hyper-parameter pθ.

On the one hand, a higher value of pθ means more activities and more activities enable more
effective weight updates, as discussed above. On the other hand, a lower value of pθ implies that there
are more subnetworks in the temporal and layer dimensions. Thus, the setting of pθ is a trade-off
that relies on empirical expertise about the specific tasks. It is an observation that the choice of pθ
is coupled with the number of spiking neurons; smaller pθ requires bigger networks (with a larger
number of spiking neurons), which slow down the training efficiency, and larger pθ may be beneficial
to prevent overfitting. Table 3 lists the recommended values of pθ in real-world experiments. Figure 9
plots the effect of dropout rate and pθ on the performance of SNN-Dropout (Sakai et al., 2019) and
StocSNN on N-MNIST, where the x-axis and y-axis denote the values and accuracy, respectively.
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The accuracy sequence was generated by SNN-Dropout and StocSNN with a dropout rate or pθ
ranging from 0.1 to 1 in increments of 0.1. It is observed that the trends in red and blue curves are
consistent, with model shaving dropout rates lower than 0.7 producing flat results, followed by a
decline in performance.

7. Conclusions and Prospects

This work provided a theoretical framework for investigating the intrinsic structures of SNNs. By
deconstructing the expressivity of SNNs, we unveil two pivotal components of intrinsic structures:
the integration operation and firing-reset mechanism. We further conclude that the membrane time
hyper-parameter intricately relates to the eigenvalues of the integration operation, thereby dictating
the functional topology of spiking dynamics. Additionally, the firing-reset mechanism fundamentally
governs the firing capacities of a whole SNN. These insights provide systematic understanding of
the impact of intrinsic structures and lead to a crucial recommendation: enhancing the adaptivity
of intrinsic structures significantly contributes to improving the performance and universality of
SNNs. Inspired by this recognition, we further proposed two feasible methods for improving SNN
learning, that is, adding self-connection architectures and building stochastic spiking neuron models
by modifying the integration operation and firing-reset mechanism, respectively. We theoretically
prove that (1) both two methods promote the expressive property of universal approximation, (2)
adding self-connection architectures encourages enough solutions and structural stability for SNN
approximating adaptive dynamical systems, and (3) stochastic excitation facilitates the explicit
generalization bounds with an exponential reduction in Rademacher complexity. Empirical validation
on various real-world datasets attests to the effectiveness of our proposed methods.

Prospects. As stated in Figure 1, artificial neural network learning typically encompasses three key
components, i.e., the neuron model, the architecture, and the learning algorithm. Unlike prior studies
that primarily focused on refining learning algorithms to enhance SNN learning, this work shifts
the emphasis towards the intrinsic structures of SNNs. Specifically, it investigates how the spiking
neuron model and the architecture of SNNs affect their learning performance. Our findings suggest
that the intrinsic structures of SNNs are crucial in determining the evolutionary and expressive
capabilities; developing adaptive intrinsic structures contributes to conducting SNN learning across
diverse datasets or tasks. Additionally, this research identifies several compelling issues that merit
further exploration in future studies.

The first one is to delve into the advantages of SNNs compared to conventional ANNs. Echoing
the approach of pioneering studies, our investigation encompasses theoretical aspects such as uni-
versal approximation capabilities and generalization bounds related to spiking computations. The
outcomes of these investigations are on par with those obtained for ANNs, offering legal assurances
for the viability of SNNs. Nonetheless, there remains a significant interest in analytically discerning
whether and to what extent SNNs surpass conventional ANNs. A feasible approach to uncovering
these advantages involves comparing the computational efficiency or expressiveness stemming from
the unique intrinsic structures of SNNs and ANNs, since there is no obvious difference between both
training procedures that usually use gradient descent for back propagation. Moreover, concentrating
this exploration on specific tasks could yield insightful conclusions regarding SNN learning. Com-
peting spiking dynamics with time-varying comparators may be favored in online learning in open
and non-stationary environments (Zhou, 2022).
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The second one is to further diminish the memory usage and latency associated with SNNs.
Presently, the implementation of SNNs often necessitates a pre-processing step of neural encoding.
This two-step manner inevitably causes errors, as well as increase the encoding length and the number
of training epochs required. Exploring normalization or regularization techniques to manage neural
encoding is considered worthwhile. Moreover, there is potential in concurrently optimizing SNN
training and neural encoding processes. Besides, SNNs are celebrated for their low-latency and
high-efficiency computing capabilities, primarily due to their aptitude for sparse computations and
processing event-driven data. Neural encoding facilitates SNNs in both receiving and generating
spike sequences. Yet, the states and connection weights are maintained in real-valued formats,
leading to substantial memory usage and latency. An intriguing proposition is the development of
SNNs with discrete, ternary, or even binary parameters. Such advancements could render spiking
computations far more efficient in terms of latency, memory, throughput, and energy consumption.
This progress may pave the way for the creation of specialized hardware tailored for neuromorphic
computing or expansive architectural designs.
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Appendix
This appendix provides the supplementary materials for this work, constructed according to the corre-
sponding sections therein. Before that, we review some related notations. Let [N ] = {1, 2, . . . , N}
be an integer set for N ∈ N+, and | · |# denotes the number of elements in a collection, e.g.,
|[N ]|# = N . The symbol x ≼ 0 means that every element xi ≤ 0 for any i ∈ [|x|#]. Let the
sphere S(r) and globe B(r) be S(r) = {x | ∥x∥2 = r} and B(r) = {x | ∥x∥2 ≤ r} for any r ∈ R,
respectively. Given two functions g, h : N+ → R, we denote by h = Θ(g) if there exist positive
constants c1, c2, and n0 such that c1g(n) ≤ h(n) ≤ c2g(n) for every n ≥ n0; h = O(g) if there
exist positive constants c and n0 such that h(n) ≤ cg(n) for every n ≥ n0; h = Ω(g) if there exist
positive constants c and n0 such that h(n) ≥ cg(n) for every n ≥ n0.

The general linear group over field F, denoted by GL(n,F), is the set of n × n invertible
matrices with entries in F. Especially, we define that a special linear group SL(n,F) is the subgroup
of GL(n,F) that consists of matrices with determinant 1. For any field F, the n × n orthogonal
matrices form the following subgroup O(n,F) = {P ∈ GL(n,F) | P⊤P = PP⊤ = En} of the
general linear group GL(n,F), where En is a n × n identity matrix. Similarly, we can denote a
special orthogonal group by SO(n,F), which consists of all orthogonal matrices of determinant 1
and is a normal subgroup of O(n,F). Therefore, this group is also called the rotation group.

Let C(K,R) be the set of all scalar functions f : K → R which are continuous on K ⊂ Rn.
Given α = (α1, α2, . . . , αn)

⊤ ∈ Nn, we define

D|α|f(x) =
∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαn
n

f(x) ,

where x = (x1, x2, . . . , xn) ∈ K and |α| =
∑

i∈[n] αi. Further, we define

Cl(K,R) =
{
f ∈ C(K,R) | D|α|f ∈ C0(K,R)

}
for α ∈ Nn with |α| ≤ l. For p ≥ 1, we define

Lp(K,R) =
{
f ∈ C(K,R)

∣∣∣ ∥f∥p,K <∞
}

,

where

∥f∥p,K
def
=

(∫
K
|f(x)|p dx

)1/p

.

This work considers the Sobolev space W l,p(K,R), defined as the collection of all functions
f ∈ Cl(K,R) and Dαf ∈ Lp(K,R) for all |α| ∈ [l], that is,

∥Dαf∥p,K =

(∫
K
|Dαf(x)|p dx

)1/p

<∞ ,

in which we employ p = 2 as the default throughout this paper.

Appendix A. Supplementary Materials for Neural Encoding

Input signals of SNNs are formal of binary strings or equally spike sequences, i.e., Ij(t) ∈ {0, 1} for
j ∈ [M ]. In cases where non-spiking data is provided, it needs to be converted into spike format
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during pre-processing. This conversion technique is commonly referred to as neural encoding.
Neural encoding methods can be broadly categorized into two main groups: timing-based encoding
and rate-based encoding. All specialized encoding schemes can be separated into one of these two
by answering whether the exact timing and order of spikes are crucial for the information to be
submitted (Auge et al., 2021).

In timing-based encoding, spike sequence relies on the precise timing of every spike, e.g.,
encoding with the distance between time instances that fire spikes (Mostafa, 2017). The following
displays several key computations of timing-based encoding, in which{

TTFS Timing : I(t) = tspike − t
(0)
spike ,

ISI Timing : I(t) = tspike − t′spike ,

where tspike, t′spike, and t
(0)
spike denote the timing of current, last, and initial spikes, respectively. In

addition, binary encoding is noteworthy, where each spike is associated with a “1” (or “0”) in a bit
stream, indicating the occurrence (or non-occurrence) of a spike within a specified interval or the
timing of the spike within that interval. This manner guarantees a consistent presence of spikes,
regardless of the specific bit pattern being encoded. Consequently, timing-based encoding can
achieve higher information densities and efficiencies. Unfortunately, temporal encoding typically
entails more intricate architectures and may lack well-established training methods.

In rate-based encoding, spike sequence relates to the spike activity over time, e.g., encoding with
the count, density, and population of fired spikes within temporal windows (Radhakrishnan et al.,
2021). The following displays the illustration of several key computations of rate-based encoding

Count Rate : I(t) =
Nspike(t : t+∆t)

∆t
(average over time) ,

Density Rate : I(t) =
Nspike(t : t+∆t)

Nruns∆t
(average over several runs) ,

Population Rate : I(t) =
Nspike(t : t+∆t)

Nneurons∆t
(average over several neurons) ,

where Nspike(t : t +∆t) denotes the spike count over interval [t, t +∆t], ∆t is the time window,
Nruns and Nneurons indicates the neural activities measured over different simulations. Thus, the
rate-based encoding can be convincible through its robustness against fluctuations and noise due to
its simplicity.

It is observed that there is an invertible transformation between the rate-based and timing-based
encoding techniques, which is theoretically investigated in Subsection 5.2. In practice, the rate-based
encoding has become the simplest and most popular encoding scheme in SNNs, and researchers
usually employ rate-based data encoded by a Poisson distribution (Susemihl et al., 2013) or recorded
by a Dynamic Vision Sensor (Quiroga et al., 2005).

Appendix B. Full Proof for Theorem 1

We first detail the computations about the Hamiltonian dynamical system led by spiking dynamics.
According to Pontryagin’s Minimum principle (Pontryagin, 1987), one can obtain the dynamical
system for spiking dynamics led by Eq. (1) as follows

H(u,v, t) =
〈
p,

du

dt

〉
+

〈
q,

dv

dt

〉
+ l(u) ,
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where l(·) is the cost function, and the state variables p = (p1, p2, . . . , pN )⊤ ∈ RN and q =
(q1, q2, . . . , qN )⊤ ∈ RN indicate the adjoint state variables that correspond to the membrane voltage
u and synaptic current v, respectively, in which the dynamics of these adjoint state variables are

dp

dt
= −∂H

∂u
and

dq

dt
= −∂H

∂v
.

Combined with Eq. (6) 
τm

du(t)

dt
= −u(t) + τr

dv(t)

dt
dv(t)

dt
= h(v) ,

Eq. (7) becomes

H(u,v, t) =
〈
p,− u

τm
+

τr
τm

dv

dt

〉
+

〈
q, h(v)

〉
+ l(u)

= −
〈
p,

u

τm

〉
+

〈
q +

τr
τm

p, h(v)

〉
+ l(u)

with for i ∈ [N ] 
dpi
dt

=
pi
τm
−
(
qi +

τr
τm

pi

)∑
j∈[M ]

Wij
∂h(v)

∂Ij

− dl(u)

dui

dqi
dt

= −
(
qi +

τr
τm

pi

)
dh(v)

dvi
.

The above formula can be simplified by the following variable conversions

p̃ =
1

τm
p and q̃ = q +

τr
τm

p ,

which yield 

H(u,v) = −⟨p̃,u⟩+ ⟨q̃, h(·)⟩+ l(u)

τm
dp̃

dt
= p̃−WM(p)q̃ − dl(u)

du
, where M

(p)
ji =

∂h(vi)

∂Ij
,

dq̃

dt
= −M(q)q̃ + τr

dp̃

dt
, where M

(q)
ki =

dh(vi)

dvk
.

Next, we startup the proof. Recall the defined total energy function

H(t) = |u|2 + 2τr
τm

∫ 〈
dv

dt
,u(t)

〉
dt− θ ,

where θ is a universal constant. Correspondingly, the unit energy defined on the kth spiking neuron
(k ∈ [N ]) becomes

Hk(t) = u2k(t) +
2τr
τm

∫ ∑
j∈[M ]

WkjIj(t)uk(t) dt− θk ,

42



ON THE INTRINSIC STRUCTURES OF SPIKING NEURAL NETWORKS

where θ1 + θ2 + · · · + θN = θ. According to (Zhang et al., 2021), the algebraic formulation of a
system of LIF equations can be formulated as ∂u(t)/∂t = −u(t)/τm when τm ̸= 0. Furthermore,
we can conclude that −1/τm is the eigenvalues of the LIF-integration operation. Recall the total
energyH and its derivative in Eq. (9), we have

H(t) = |u|2 + 2τr
τm

∫ 〈
∂v

∂t
,u(t)

〉
dt− θ ,

dH
dt

=
1

2
u⊤ M(τm) u ,

where matrix M(τm) is of the quadratic form

M(τm) =


−1/τm 0 . . . 0

0 −1/τm . . . 0
...

...
. . .

...
0 0 . . . −1/τm


N×N

.

This derivative dH/dt represents the rate at which the energy function changes, which is determined
by the hyper-parameter τm. Thus, Eq. (1) typically induces a bifurcation dynamical system in which
1/τm or −1/τm is the corresponding bifurcation hyper-parameter. Furthermore, it is obvious that

• For the case of −1/τm > 0, one has a energy-increasing system according to dH/dt > 0.

• For the case of −1/τm = 0, the system works with invariant energy, that is, dH/dt = 0.

• For the case of −1/τm < 0, we have dH/dt < 0, thus leading to a energy-decreasing system.

As concluded, −1/τm indicates the eigenvalue of the LIF-integration operation, where 1/τm > 0,
1/τm = 0, and 1/τm < 0 correspond to the dissipative, conservative, and energy-diffuse dynamical
systems, respectively. This completes the proof. □

Appendix C. Full Proof for Theorem 2

Similar to the thought line of (Zhang and Zhou, 2022, Theorem 1), we here should prove that the
function fk(·, t) expressive by the kth spiking neuron is a “well-defined” basis function. We start this
proof with an abbreviation from fk(·, t) to f(·) for simplicity. For r ∈ [l], we have

Drf(x) =

∫
RM

D̂rf(y) exp
(
2π iy⊤x

)
dy

=

∫
RM

D̂rf(βy) exp
(
2πβ iy⊤x

)
d(βy)

=

∫
RM

(2πβ iy)rf̂(βy) exp
(
2πβ iy⊤x

)
|β|M dy

=

∫
RM

[
yr|β|M f̂(βy)

] [
(2πβ i)r exp

(
2πβ iy⊤x

)]
dy

=

∫
RM

yr|β|M f̂(βy)

f̂e(β)

[
D̂rfe(β) exp

(
2πβ iy⊤x

)]
dy

=

∫
RM

yr|β|M f̂(βy)

f̂e(β)

[∫
R
Drfe(α) exp (−2π iβα) dα

]
exp

(
2πβ iy⊤x

)
dy ,

(43)
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where α, β ∈ R, and the above equations hold from the Fourier transforms and some of their
properties. By taking the real part of Eq. (43), we have

Drf(x) =

∫
RM

∫
R
yrDrfe(α)K(α, β,y) dα dy , (44)

where

K(α, β,y) =
|β|M f̂(βy) exp

[
2πβ i(y⊤x− α)

]
f̂e(β)

.

In this proof, we set

α = y⊤x+ ℏ, y = W⊤
k,[M ], ℏ = − 1

τm

∑
i∈[N ]

exp

(
− t− t′

τm

)
Vkisi(t

′) , (45)

and the kth element of vector x equals to a temporal-weighted average of Ik(t) at time interval [t′, t]

xk =

∫ t

t′
exp

(
−s− t′

τm

)
Ik(s) ds.

Thus, we have

K(α, β,y) = |β|
M f̂(βy) exp (2πβℏ i)

f̂e(β)

def
= Kβ(ℏ,y) and sup

x∈K
|x| ≤ Cx .

Based on Eq. (44), we can construct a family of approximation functions of the form

fκ(x) =

∫
B1

∫
B2

fe(y
⊤x+ ℏ)Kβ(ℏ,y) dℏdy , (46)

where B1 = {x | x ≼ κ} and B2 = {x | x ≼ (CxM + 1)κ}. Thus, we have

Drfκ(x) =

∫
B1

∫
B2

yrDrfe(y
⊤x+ ℏ)Kβ(ℏ,y) dℏdy . (47)

It suffices to prove that Drfκ → Drf uniformly on K, as κ→∞. Now

Drfκ(x)−Drf(x) =

∫
RM/B1

∫
R
yrDrfe(y

⊤x+ ℏ)Kβ(ℏ,y) dℏdy

+

∫
B1

∫
R/B2

yrDrfe(y
⊤x+ ℏ)Kβ(ℏ,y) dℏdy

def
= R1 +R2 .
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For R1, one has

|R1| =

∣∣∣∣∣
∫
RM/B1

∫
R
yrDrfe(y

⊤x+ ℏ)Kβ(ℏ,y) dℏdy

∣∣∣∣∣
≤
∫
RM/B1

|yr|
∣∣∣∣∫

R
Drfe(y

⊤x+ ℏ)Kβ(ℏ,y) dℏ
∣∣∣∣ dy

≤
∫
RM/B1

|yr|
∣∣∣∣∫

R
Drfe(y

⊤x+ ℏ) dℏ
∣∣∣∣
∣∣∣∣∣ |β|M f̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∥∥∥Drfe(y

⊤x+ ℏ)
∥∥∥
1,R

∫
RM/B1

∣∣∣∣∣ |β|Myrf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∥∥∥Drfe(y

⊤x+ ℏ)
∥∥∥
1,R

∫
R/B̃1

∣∣∣∣∣ |βy|rf̂(βy)f̂e(β)|β|r

∣∣∣∣∣d(βy)
≤

∥∥Drfe(y
⊤x+ ℏ)

∥∥
1,R∣∣∣f̂e(β)|β|r∣∣∣
∫
R/B̃1

∣∣∣yrf̂(y)
∣∣∣dy ,

where B̃1 = {βx | βx ≼ βκ}. For R2, one has

|R2| =

∣∣∣∣∣
∫
B1

∫
R/B2

yrDrfe(y
⊤x+ ℏ)Kβ(ℏ,y) dℏ dy

∣∣∣∣∣
≤
∫
B1

∣∣∣∣∣
∫
R/B2

Drfe(y
⊤x+ ℏ) dℏ

∣∣∣∣∣
∣∣∣∣∣ |β|Myrf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∫
R/B̃2

|Drfe(µ)| dµ ·
∫
B̃1

∣∣∣∣∣ |βy|rf̂(βy)f̂e(β)|β|r

∣∣∣∣∣d(βy)
≤
∫
R/B̃2

|Drfe(µ)| dµ
∥Drfe(µ)∥1,B̃1∣∣∣f̂e(β)|β|r∣∣∣ ,

where µ = y⊤x+ ℏ and B̃2 = {x | x ≼ κ} since |µ| ≥ κ. Summing up the inequalities above, we
have

sup
x∈K
|Drfκ(x)−Drf(x)| ≤ C1

κ + C2
κ∣∣∣f̂e(β)|β|r∣∣∣

with

C1
κ =

∥∥∥Drfe(y
⊤x+ ℏ)

∥∥∥
1,R

∫
R/B̃1

∣∣∣yrf̂(y)
∣∣∣dy and C2

κ = ∥Drfe(µ)∥1,B̃1

∫
R/B̃2

|Drfe(µ)|dµ ,

which tends to 0 as κ → ∞. Given κ, it suffices to construct a series of approximations to fκ in
Eq. (46). Formally, we define

f̃n
κ (x) =

∑
µ∈U

β̃fe(ỹ
⊤x+ ℏ̃) ,
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where 
µ = (µ1, µ2, . . . , µM )⊤ with µi ∈ [−n, n] ∩ Z for i ∈ [M ],

β̃ = (CxM + 1)(κ/n)M+1Kβ(ℏ̃, ỹ) ,
ỹ = µκ/n ,

ℏ̃ = µ∗(CxM + 1)κ/n with µ∗ ∈ [−n, n] ∩ Z .

It is observed that f̃n
κ belongs to the set of expressive functions, and

Drf̃n
κ (x) =

∑
µ∈U

(CxM + 1)(κ/n)M+1 ỹrDrfe(ỹ
⊤x+ ℏ̃) Kβ(ℏ̃, ỹ) . (48)

Next, we are going to prove that Drf̃n
κ → Drfκ uniformly on K, as n → ∞. For simplicity, we

define the following function

Gβ(x,y, ℏ) = yrDrfe(y
⊤x+ ℏ)Kβ(ℏ,y) .

Thus, Eq. (47) and Eq. (48) become

Drfκ(x) =
∑
µ∈U

∫
B3

Gβ(x,y, ℏ) dℏ dy and Drf̃n
κ (x) =

∑
µ∈U

∫
B3

Gβ(x, ỹ, ℏ̃) dℏdy ,

respectively, where ∪µ∈UB3 = {(x0, x1, . . . , xM ) | x0 ∈ B2, (x1, . . . , xM )⊤ ∈ B1} ⊂ RM+1.
Hence, one has

sup
(ℏ,y),(ℏ̃,ỹ)∈B3

∣∣∣Gβ(x,y, ℏ)−Gβ(x, ỹ, ℏ̃)
∣∣∣ <∞ .

Let
Cn
κ (δ)

def
= sup

(ℏ,y),(ℏ̃,ỹ)∈B3
|(ℏ,y)−(ℏ̃,ỹ)|≤δm+1

∣∣∣Gβ(x,y, ℏ)−Gβ(x, ỹ, ℏ̃)
∣∣∣ .

Thus, we have∣∣∣Drf̃n
κ (x)−Drfκ(x)

∣∣∣ ≤∑
µ∈U

∫
B3

∣∣∣Gβ(x,y, ℏ)−Gβ(x, ỹ, ℏ̃)
∣∣∣dℏdy

≤
∑
µ∈U

∫
B3

Cn
κ (κ/n) dℏdy

≤ Cn
κ (κ/n)

∑
µ∈U

∫
B3

dℏdy

≤ Cn
κ (κ/n) (2n)

M+1 (CxM + 1)(κ/n)M+1,

where the last inequality holds from∫
B3

dℏdy = (CxM + 1)(κ/n)M+1 and |U|# = (2n)M+1.

Further, we can obtain

sup
x∈K

∣∣∣Drf̃n
κ (x)−Drfκ(x)

∣∣∣ ≤ (CxM + 1)(2κ)M+1 Cn
κ (κ/n) ,
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which tends to 0 as n→∞.
Therefore, we can prove that the set of concerned functions is dense in Cr(K,R) for all r ∈ [l],

by taking double limits n→∞ before κ→∞. Besides, Cr(K,R) is dense in C0(K,R). According
to the transitivity of dense operations, we can finish this proof. □

Appendix D. Full Proof for Theorem 3

Following the proof of (Zhang et al., 2021, Theorem 2), we have the algebraic representation of
linear ScSNNs.

du

dt
= Lvu+G(u,V) with Lv = A+BN and G(u,V) = o(|u|),

where

A =

−1/τm . . .
−1/τm


N×N

and BN =


0 V1,2 . . . V1,N

V2,1 0 . . . V2,N
...

...
. . .

...
VN,1 VN,(N−1) . . . 0

 .

Suppose that the eigenvalues of the matrix BN are β1, . . . , βN . So the eigenvalue ρi of v can be
calculated as the sum of that of A and that of BN , that is, ρi = 1/τm + βi for i ∈ [N ]. Zhang et
al. (Zhang et al., 2021) has elucidated the bifurcation solutions relative to the eigenvalues. Identifying
the number of indefinite eigenvalues can be

To compute the lower bound, we follow the idea of “Divide and Conquer”. Let H∗(N) denote the
number of indefinite eigenvalues of N ×N matrix BN . Suppose N = K1 +K2 for K1,K2 ∈ N+,
then we have

H∗(N) ≥ H∗(K1) +H∗K2 ,

where the concerned matrix BN is divided into two sub-matrices

BK1 =


0 V1,2 . . . V1,K1

V2,1 0 . . . V2,K1

...
...

. . .
...

VK1,1 VK1,(K1−1) . . . 0


and

BK2 =


0 V(K1+1),(K1+2) . . . V(K1+1),N

V(K1+2),(K1+1) 0 . . . V(K1+2),N
...

...
. . .

...
VN,(K1+1) VN,(K1+2) . . . 0

 .

So on and so forth, we can compute the worst case as cN logN where c ∈ (0, 1/2). This completes
the proof. □
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Appendix E. The Computations for the Simulation Experiment in Subsection 4.2

This section shows the whole process of solving the differential equations. In the case of two neurons,
we have the algebraic equations as follows

τm
du(t)

dt
= −u(t) +V ,

where V is of the following parameterized form

V =

(
0 V12

V21 0

)
.

The first step is to calculate the eigenvalues and eigenvectors of matrix V according to∣∣βE2 −V
∣∣ = ∣∣∣∣ β −V12

−V21 β

∣∣∣∣ = 0 ,

where E2 is a 2× 2 unit matrix.

Two Simple Roots. Set
∣∣βE2 −V

∣∣ = 0, we get the eigenvalues β1 =
√
V12V21 and β2 =√

V12V21. Plugging β1 into the matrix

β1E2 −V =

(√
V12V21 −V12

−V21

√
V12V21

)
,

the corresponding eigenvector of β1 is η1 = (
√
V12,

√
V21). Analogously, the eigenvector of β2 is

η2 = (−
√
V12,

√
V21).

For M(V, τm), the eigenvalues are ρ1 = −1 +
√
V12V21, ρ2 = −1 −

√
V12V21 provided

τm = 1, and the eigenvectors are the same. Notice that we here assume ρ1 ̸= ρ2, i.e., V12V21 ̸= 0.
Then, we can obtain the general solution of the concerned differential equations as follows

u(t) = C1η
T
1 e

ρ1t + C2η
T
2 e

ρ2t ,

or more explicitly, {
u1(t) = C1

√
V12e

ρ1t − C2

√
V12e

ρ2t ,

u2(t) = C1

√
V21e

ρ1t + C2

√
V21e

ρ2t ,

where u = (u1, u2)
⊤ and C1, C2 ∈ R.

Finally, some special values can be substituted into the expressions above. Given V12 = 1 and
V21 = 1, we have ρ1 = 0 and ρ2 = −2, the solution u can be written as{

u1(t) = C1 − C2e
−2t ,

u2(t) = C1 + C2e
−2t .

Provided the initial point u(0) = (6, 3), the ultimate solutions are
u1(t) =

3

2
e−2t +

9

2
,

u2(t) = −
3

2
e−2t +

9

2
.
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Table 7: All the motion curves of points in our simulation experiment.

Values of (V12,V21) u(0) = (3, 6) u(0) = (5, 6) u(0) = (6, 3)

(0,0)
u1(t) = 3e−t

u2(t) = 6e−t

u1(t) = 5e−t

u2(t) = 6e−t

u1(t) = 6e−t

u2(t) = 3e−t

(0,1)
u1(t) = 3e−t

u2(t) = 3te−t + 6e−t

u1(t) = 5e−t

u2(t) = 5te−t + 6e−t

u1(t) = 6e−t

u2(t) = 6te−t + 3e−t

(1,1)
u1(t) = −

3

2
e−2t +

9

2

u2(t) =
3

2
e−2t +

9

2

u1(t) = −
1

2
e−2t +

11

2

u2(t) =
1

2
e−2t +

11

2

u1(t) =
3

2
e−2t +

9

2

u2(t) = −
3

2
e−2t +

9

2

(4,1)
u1(t) =

15

2
et − 9

2
e−3t

u2(t) =
15

4
et +

9

4
e−3t

u1(t) =
17

2
et − 7

2
e−3t

u2(t) =
17

4
et +

7

4
e−3t

u1(t) = 6et

u2(t) = 3et

One Double Root. If V12V21 = 0, we have one double root, that is, ρ = ρ1 = ρ2 = −1. For the
case of V12 = 0 and V21 = 1, we assume that the solution is{

u1(t) = (C1 + C2t)e
ρt ,

u2(t) = (D1 +D2t)e
ρt ,

where D1, D2 ∈ R. Plugging them into the original formula and use the initial point u(0) = (3, 6),
the final solutions are {

u1(t) = 3e−t ,

u2(t) = 3te−t + 6e−t .

Finally, the table below lists all the motion curves of points in our simulation experiment.

Appendix F. Computation Details for H(n)

This section first identifies the non-negativity of H(n) in Theorem 4, and then explores the explicit
bounds of H(n). However, it is a tricky challenge to tighten H(n) that corresponds to Eq. (15) in
confronted of dynamical systems, which coincides with the second part of Hilbert’s 16th problem.
In the near past, it has not been possible to find uniform upper bounds for H(n), referring to the
knowledge of Llibre et al. (2015). Thus, we present a calculable approach for computing the upper
bound of H(n) rather than finding the explicit one and then provide a provable lower bound of H(n)
in Theorem 5.

F.1 Existence

Now, we present the existence theorem as follows.
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Theorem 13 (Corresponding to Theorem 4) Let ũ be a critical point of system (28). For ϵ > 0
sufficiently small, there exists a (2π-periodic) stable bifurcation solution f(t, ϵ) of system (28) s.t.
f(0, ϵ)→ ũ as ϵ→ 0.

Theorem 4 shows the existence of (2π-periodic bifurcation) limit cycles as well as stable bifurcation
solutions of the perturbed dynamical system, which implies that H(n) ≥ 0. This result holds from
the following useful lemmas, while the complete proof of Theorem 4 can be accessed in Appendix G.

Lemma 14 The perturbed system (28) induces a planar differential equation as follows

∂f(t, ϵ)

∂t
=

K∑
k=0

ϵkFk(t, f) + ϵK+1reset(t, f, ϵ) (normal form) , (49)

with ∫ T

0
reset(s, f, ϵ) ds = O(1) , (50)

where Fk : R×K→ R and reset : R×K× [−ϵ0, ϵ0]→ R are Ck-continuous functions in which
K denotes the functional space, k = 0, 1, 2 . . . ,K, and ϵ0 ≥ 0.

Lemma 14 essentially is a Taylor expansion of ∂f(t, ϵ)/∂t where each component Fk(t, f) computes
the estimation of degree k for the concerned perturbed system, leading to an equivalent formation
of the concerned system (28). The formulas of Lemma 14 contribute to the periodic solutions of
recursive formations, as shown in the following lemma. Notice

Lemma 15 Suppose that ũ and f(t, ϵ) : [0, T ]× [−ϵ0, ϵ0]→ R be the critical point and solution of
system (28), respectively, satisfying that f(0, ϵ) = ũ. Then for t ∈ [0, T ], we have

f(t, ϵ) = ũ+

∫ t

0
F0(s, ũ) ds+

K∑
k=0

ϵkGk(t, ũ) + ϵK+1

[∫ t

0
reset(s, f(s, ϵ), ϵ) ds+O(1)

]
,

where Gk (for k = 0, 1, 2, . . . ,K) is of recursive form as follows

Gk(t, u) =

∫ t

0
[Fk(s, u) + Gk (Fr(s, u), Gr(s, u))] ds ,

in which

Gk =

k−1∑
r=1

∑
α∈Sr

D|α|Fk−r(s, u)

α1!(α2!2!α2) . . . (αr!r!αr)

r∏
l=1

Gl(s, u)
αj ,

where α = (α1, . . . , αr) ∈ Sr and Sr denotes the set of all r-tuples of non-negative integers
{αj}j∈[r] that satisfies ∑

j

jαj = r .

Lemma 15 provides the existence and the recursive formation of the concerned periodic solutions
(i.e., limit cycles) of system (28).
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F.1.1 PROVABLE LOWER BOUND

Now, we present the lower bound theorem as follows.

Theorem 16 (Corresponding to Theorem 5) Let H(n) denote the maximum number of limit cycles
of dynamical systems with n-order polynomial implementation in Eq. (16). Then we have H(n) =
Ω(n2 lnn).

Theorem 5 shows the lower bound of H(n) of the dynamical system led by Eq. (15). In detail, we
have H(1) ≥ 0, H(3) ≥ 1, H(7) ≥ 25, H(15) ≥ 185, and H(31) ≥ 1262.

The complete proof of Theorem 5 can be accessed in Appendix H, and its proof idea can be
summarized as follows. According to Subsection 4.3, the lower bound of H(n) coincides with
the maximum possible number of limit cycles of the dynamical system led by Eq. (15). Hence, a
key intuition of bounding H(n) is to reformulate the lower bound into a recursive formation. It is
observed that equipped with polynomial of degree n in Eq. (16), Eq. (15) leads to a Hamiltonian
system with perturbation ϵ,

duk(t)

dt
= −∂H(uk, uk′)

∂uk′
+ ϵfϵ(uk, uk′)

duk′(t)

dt
=

∂H(uk, uk′)
∂uk

+ ϵgϵ(uk, uk′)

for k, k′ ∈ [N ] , (51)

whereH(uk, uk′) = Poly(uk)2+Poly(uk′)2 indicates the Lyapunov-like energy function, ϵ ∈ (0,∞)
denotes the noise amplitude, fϵ(uk, u′k) and gϵ(uk, u

′
k) are two polynomial functions of degree 2n−1

with respect to uk and u′k. Therefore, H(n) meets a recursive formation as follows:

H(2n+1 − 1) = 4H(2n − 1) + (2n − 2)2 + (2n − 1)2 .

With straightforward computations, we can conclude that there exists a constant C > 0 such that

H(n) ≥ C(n+ 1)2 ln(n+ 1) .

F.1.2 ALGORITHMIC UPPER BOUND

From Lemma 15, we specify the general solution of which the kth component Gk(t, u) is of a
recursive form. So it is feasible to simulate Gk(t, u) algorithmically. Further, we can obtain the limit
cycle f(t, ϵ), and then, the upper bound of H(n) can be calculable easily. Inspired by this recognition,
we present the algorithm for calculating the kth component of limit cycles. The procedure is listed in
Algorithm 1, which comprises the following four steps:

1. Simulate Eq. (49) with K th order and ϵ from the perturbed system (28) in Procedure 1-3.

2. Formulate the exact formula of Fk(t, ϵ) for k ∈ [K] in Procedure 4.

3. Compute the approximation to Gk(t, ϵ) relative to ∂rFk/∂ϵ
r and reset(t, u, ϵ) for k ∈ [K] and

r ∈ [k] in Procedure 5-12.

4. Calculate the upper bound of H(n) using the number of positive simple critical points of
Gk(t, ϵ) for k ∈ [K] in Procedure 13.
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Now, we have the following proposition.

Proposition 17 (Corresponding to Proposition 6) From Algorithm 1, H(n) can be upper bounded
by the number of positive simple critical points of Gk(t, ϵ) for k ∈ [K].

Notice that the numerator for each kth component Gk(t, ϵ) is a polynomial function with degree
⌊N ·T = 2 ·2π⌋ = 12. Drawing on the experience of Huang and Yap (2023), we can greatly improve
the calculation speed by updating Eq. (49) along with forcing G1 ≡ G2 ≡ · · · ≡ GK−1 ≡ 0.

Appendix G. Full Proof for Theorem 4

This section provides detailed proof for Theorem 4. Lemma 14 establishes based on the perturbation
structure between original system (27) and perturbed system (28). Lemma 15 generalizes the Faa di
Bruno’s Formula in (Johnson, 2002),

dg(f)(t)

dt
=
∑
Sr

CSr

dh(r)g(f)(t)

dth(r)

r∏
l=1

(
dlf(t)

dtl

)αj

,

where g, f ∈ CK(R,R) and

CS =
r!

α1!(α2!2!α2) . . . (αr!r!αr)
,

for Sr denotes the set of all r-tuples of non-negative integers {αj}j∈[r] that satisfies∑
j

jαj = r and h(r) =
∑
j

αj .

Informally, we re-formulate the solution function f as f(t, ϵ, u) : [0, T ]× [−ϵ0, ϵ0]×K→ K. Hence,
we have

f(t, ϵ, u) = u+

∫ t

0
F0(s, ũ) ds+

K∑
k=0

ϵkGk(t, u) + ϵK+1

[∫ t

0
reset(s, f(s, ϵ), ϵ) ds+O(1)

]
for f(0, ϵ, ũ) = ũ, especially,

f(t, ϵ) = ũ+

∫ t

0
F0(s, ũ) ds+

K∑
k=0

ϵkGk(t, ũ) + ϵK+1

[∫ t

0
reset(s, f(s, ϵ), ϵ) ds+O(1)

]
,

where Gk (for k ∈ [K]) is of recursive form as follows

Gk(t, u) =

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds ,

for all r ∈ [k − 1]. The Taylor expansion of Fk(t, f(t, ϵ, u)) for k ∈ [K − 1] around ϵ = 0 is given
by

Fk(t, f(t, ϵ, u)) = Fk(t, f(t, 0, u)) + ϵK−k+1O(1) +
K−k∑
r=1

ϵr

r!

(
∂rFk(t, f(t, ϵ, u))

∂ϵr

) ∣∣∣∣
ϵ=0

. (52)

52



ON THE INTRINSIC STRUCTURES OF SPIKING NEURAL NETWORKS

From the Faa di Bruno’s Formula, we calculate the r-derivatives of Fk(t, f(t, ϵ, u)) in ϵ

∂rFk(t, f(t, ϵ, u))

∂ϵr

∣∣∣∣
ϵ=0

=
∑
Sr

CSr!
dh(r)Fk(t, f(t, ϵ, u))

dth(r)

∣∣∣∣
ϵ=0

r∏
l=1

Gl(t, u)
αl , (53)

for k ∈ [K − 1], where

Gk(t, u) =
1

r!

(
∂rf(t, ϵ, u)

∂ϵr

) ∣∣∣∣
ϵ=0

=

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds (54)

with

G =

k∑
r=1

∑
Sr

Dh(r)Fk−r(s, u)

α1!(α2!2!α2) . . . (αr!r!αr)

r∏
l=1

Gl(s, u)
αl for all r ∈ [k − 1] .

Substituting Eq. (53) into Eq. (52), the Taylor expansion of Fk(t, f(t, ϵ, u)) at ϵ = 0 becomes

Fk(t, f(t, ϵ, u)) = Fk(t, u)+ϵK−k+1O(1)+
K−k∑
r=1

∑
Sr

CSϵ
r d

h(r)Fk(t, f(t, ϵ, u))

dth(r)

∣∣∣∣
ϵ=0

r∏
l=1

Gk(t, u)
αj

for k ∈ [K − 1]. Moreover, the above result holds for the case k = 0. Further, for k = K, one has

Fk(t, f(t, ϵ, u)) = Fk(t, u) + ϵO(1) . (55)

Since the set [0, T ]× [−ϵ0, ϵ0]× Ū is compact and Fk(t, u) is locally Lipschitz in Ū with scale L

|Fk(t, f(t, ϵ, u))− Fk(t, u)| ≤ L|f(t, ϵ, u)− u| = O(1) . (56)

Summing up the above results, we can conclude that

f(t, ϵ, u) = u+

∫ t

0
F0(s, ũ) ds+

K∑
k=0

ϵkGk(t, u) + ϵK+1

[∫ t

0
reset(s, f(s, ϵ), ϵ) ds+O(1)

]
,

(57)
where Gk (for k ∈ [K]) is of recursive form as follows

Gk(t, u) =

∫ t

0

[
Fk(s, u) + G

(
Dh(r)Fr(s, u), Gr(s, u)

)]
ds ,

for all r ∈ [k − 1], in which

G =
k∑

r=1

∑
Sr

Dh(r)Fk−r(s, u)

α1!(α2!2!α2) . . . (αr!r!αr)

r∏
l=1

Gl(s, u)
αl ,

for Sr denotes the set of all r-tuples of non-negative integers {αj}j∈[r] as noted in Section 2,
satisfying ∑

j

jαj = r and h(r) =
∑
j

αj .
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Finishing the Proof of Theorem 4. Let f(0, ϵ) = ũ(0, ϵ), which is abbreviated as ũ. Let U ⊂ K be
a neighborhood of the critical point ũ such that Gk(t, u) ̸= 0 for all u ∈ Ū/ũ and the Brouwer degree
dB(Gk, U, ũ) ̸= 0 (Llibre et al., 2014). For each u ∈ Ū , there exists ϵ0 > 0 such that the function
f(t, ϵ) is defined on [0, T ] × [−ϵ0, ϵ0] once ϵ ∈ [−ϵ0, ϵ0]. Thus, f(t, ϵ) : [0, T ] × [−ϵ0, ϵ0] → R
indicates the solution of system (28), as defined in Lemma 15. From the Existence and Uniqueness
Theorem (Sanders et al., 2007, Theorem 1.2.4), the domain of function f(·, ϵ) can be bounded
according to t ≤ inf(T, d/M(ϵ)), where

M(ϵ) ≥

∣∣∣∣∣
K∑
k=1

ϵkFk(t, f) + ϵK+1reset(t, ϵ, u)

∣∣∣∣∣ .
Obviously, we can ensure inf(T, d/M(ϵ)) = T by taking a sufficiently large d/M(ϵ) as ϵ is
sufficiently small. On the one hand, based on the continuity of the solution f(t, ϵ) and the com-
pactness of the set [0, T ] × [−ϵ0, ϵ0], there exists an image set K such that f(t, ϵ) ∈ K, that is,
f(t, ϵ) : [0, T ] × [−ϵ0, ϵ0] → K. Informally, we can re-formulate the solution function f as
f(t, ϵ, u) : [0, T ] × [−ϵ0, ϵ0] × K → K throughout this proof. On the other hand, based on the
continuity of the function reset, we have

|reset(s, ϵ, f)| ≤ max{|reset(t, ϵ, u)|} = N .

for all (t, ϵ, u) ∈ [0, T ]× [−ϵ0, ϵ0]×K. Further, we have∣∣∣∣∫ T

0
reset(s, ϵ, f) ds

∣∣∣∣ ≤ ∫ T

0
|reset(s, ϵ, u)|ds = TN ,

which implies that ∫ T

0
reset(s, ϵ, f) ds = O(1) . (58)

Provided ϵg(u, ϵ) = f(T, ϵ, u)− u, then from Lemma 15 and Eq. (50), we have

g(u, ϵ) =

K∑
k=1

ϵk−1Gk(T, u) + ϵKO(1) ,

where u ∈ Ū/ũ. It is self-evident that when T = 2π, it holds that U ⊂ K is a neighborhood of the
critical point ũ satisfying

(1) Gk(t, u) ̸= 0 for all u ∈ Ū/ũ,

(2) the Brouwer degree dB(Gk, U, ũ) ̸= 0 (Llibre et al., 2014).

Hence, we have

g(u, ϵ) =
K∑
k=r

ϵk−1Gk(2π, u) + ϵKO(1) ,

for the case that Gl ≡ 0 for l ∈ [r − 1] and r ∈ [k] but Gr ̸= 0. Thus, it is self-evident that f(t, ϵ) is
an 2π-periodic solution if and only if g(u, ϵ) = 0. From (Llibre et al., 2014, Lemma 6), we have

dB(Gr, U, ũ) = dB(g(u, ϵ), U, ũ) ̸= 0 ,
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for |ϵ| > 0 sufficiently small. Further, from (Crawford, 1991, Charpter VIII), there exists some
u(ϵ) ∈ U such that g(u(ϵ), ϵ) = 0. Therefore, we can conclude that f(t, ϵ, u(ϵ)) is a periodic
solution of system (28), and then, pick up a collection of u(ϵ) such that u(ϵ) → ũ as ϵ → 0. This
completes this proof. □

Appendix H. Full Proof for Theorem 5

We begin the proof of Theorem 5 with some useful lemmas.

Lemma 18 The ScSNN-PIRATE model in Eq. (15) with n-order polynomial bifurcation fields
coincides with a Hamiltonian system of degree free(n) = 2n − 1.

Lemma 19 The Hamiltonian system led by Eq. (15) with n-order polynomial bifurcation fields has
at least P (n) limit cycles in which

P (n+ 1) = P (n) + (free(n)− 1)2 + free(n)2 . (59)

Lemma 19 provides a recursive sequence P (n) relative to the freedom degree 2n − 1 of system (51),
which contributes to the lower bound of H(n).

The basic theory of the perturbation of planar Hamiltonian systems is well known. In general,
we can reload Eq. (51) as 

duk(t)

dt
= −∂H(uk, uk′)

∂uk′
+ ϵfϵ(uk, uk′) ,

duk′(t)

dt
=

∂H(uk, uk′)
∂uk

+ ϵgϵ(uk, uk′) .

We are going to show the degree of system Eq. (51). We start this proof with an example of n = 2

H(uk, u′k) = (u2k − 1)2 + (u′2k − 1)2 .

Thus, the unperturbed system has nine critical points, that is, (x, y) for x, y ∈ {−1, 0, 1}, of which
5 points are non-degenerate, that is, (±1,±1) and (0, 0). Therefore, we can claim that there is a
polynomial fϵ of degree 3, which meets the degree result 22 − 1 = 3 of Lemma 18, such that

duk(t)

dt
= −∂H(uk, uk′)

∂uk′
+ ϵfϵ(uk, uk′)

duk′(t)

dt
=

∂H(uk, uk′)
∂uk

has limit cycles around critical points (−1,−1), (0, 0), or (1, 1), if ϵ is sufficiently small but ϵ ̸= 0.
This claim is self-evident if provided

fϵ(uk, u
′
k) =

1

3
(uk − u′k)

2 − ϵ(uk − u′k) .

Next, it suffices to develop the above result to the case of n via mathematical induction. Then we
have the following proposition.

55



ZHANG, CHEN, WU, ZHANG, XIONG, GU, AND ZHOU

Proposition 20 The system Eq. (51) has non-degenerate critical points at the origin and at 2n − 2
other points on each axis, all of which lie within {(x, y) | |x| ≤ 2n−1 and |y| ≤ 2n−1}.

Based on this proposition, we can conclude that

free(n) = 2n−1 + 1 .

Consider a clear-cut case that{
Poly(uk; 1) = uk

Poly(uk;n) = Poly(u2k − 2n−2;n− 1), for n ≥ 2 ,

then the system of Eq. (51) induces a singular transformation

(uk, u
′
k) 7→ (u2k − 2n−2, u′2k − 2n−2)

that is,
(uk, u

′
k) 7→

[
u2k − (free(n)− 1), u′2k − (free(n)− 1)

]
for n ≥ 2. Further, it is easy to calculate the recursive sequence of Eq. (59) as follows

P (n+ 1) = P (n) + (free(n)− 1)2 + free(n)2 .

Finishing the Proof of Theorem 5. From Lemma 19, the recursive formation of P (n) indicates the
lower bound of H(n). Let P (n) = 4nQ(n). Then Eq. (59) becomes

Q(n+ 1) =
1

4
Q(n) +

1

2
− 3

2n+1
+

5

4n+1
.

Further, we have Q(2) = 3/16 and

Q(n) =
1

4
Q(n− 1) +

1

2
− 3

2n
+

5

4n
=

Q(2)

4n−1
+

n− 2

2
− 3(1− 2−n+2)

4
+

5(1− 4−(n+2))

48

=
Q(2)

4n−1
+

n

2
−
(
16

5

)−n

− 5 · 4−n

3
− 79

48
=

n

2
−
(
16

5

)−n

− 4−n

2
− 79

48

for n ≥ 3. Since H(n) ≥ P (n) ≥ 4nQ(n) and the degree of Eq. (51) is free(n) = 2n−1, we have

H(2n − 1) ≥ 4n−1

(
2n− 35

6

)
+

(
16

5

)n

− 5

3
.

Re-substituting the variable n, the above inequality becomes

H(n) ≥ (n+ 1)2

2
(log2(n+ 1)− 3) + 3n .

Therefore, there exists some constant C such that

H(n) ≥ C(n+ 1)2 ln(n+ 1) .

This completes the proof. □
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Appendix I. Full Proof for Corollary 7

We begin our analysis with a recall for the concerned example system. We consider a simple case of
N = 2, n = 2, m = 3, and K = 5, as follows:

du1(t)

dt
= −u1(t)

τm
+ u1(t)

2u2(t) + ϵ Poly1(u(t);m) ,

du2(t)

dt
= −u2(t)

τm
+ u1(t)u2(t)

2 + ϵ Poly2(u(t);m) ,

where
Polyi(u; 3) = βi

k,1u1 + βi
k,2u2 + βi

k,3u
2
1 + βi

k,4u1u2 + βi
k,5u

2
2

+ βi
k,6u

3
1 + βi

k,7u
2
1u2 + βi

k,8u1u
2
2 + βi

k,9u
3
2 ,

for i ∈ [N = 2] and k ∈ [K = 5]. Obviously, it is known as a cubic system with m = 3rd polynomial
perturbations.

Here, we employ K = 5th component to estimate the upper bounds of H(n). From Procedure
1-3, we first convert Eq. (29) into

∂f(t, ϵ)

∂t
=

5∑
k=0

ϵkFk(t, f) + ϵ6reset(t, ϵ, f) ,

and thus, we have
∂f(t, ϵ)

∂t
= F0 +

5∑
k=1

ϵkFk(t, f) +O(ϵ6) .

Next, we provide the detailed calculation paradigms for f provided Gk and Fk (k ∈ [K = 5]). For
convenience, we consider two cases either F0 ≡ 0 or F0 ̸≡ 0. Let ⊙ denote the Hadamard product.
We have the sets Sr for r ∈ [K = 5]

S1 = {1},
S2 = {(0, 1), (2, 0)}
S3 = {(0, 0, 1), (1, 1, 0), (3, 0, 0)},
S4 = {(0, 0, 0, 1), (1, 0, 1, 0), (2, 1, 0, 0), (0, 2, 0, 0), (4, 0, 0, 0)},
S5 = {(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (2, 0, 1, 0, 0), (3, 1, 0, 0, 0), (1, 2, 0, 0, 0), (5, 0, 0, 0, 0)}.

(i) For the case of F0 ≡ 0, we have

G0(u) = 0

G1(u) =

∫ T

0
F1(t, u) dt

G2(u) =

∫ T

0
F2(t, u) ds+

∂F1

∂u
(t, u)y1(t, u)dt

G3(u) =

∫ T

0

(
F3(t, u) +

∂F2

∂u
(t, u)y1(t, u)

)
dt+

∫ T

0

(
∂2F1

∂u2
(t, u)y1(t, z)

2 +
∂F1

∂u
(t, u)y2(t, u)

)
dt
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G4(u) =

∫ T

0

(
F4(t, u) +

∂F3

∂u
(t, u)y1(t, u)

)
dt+

∫ T

0

(
∂2F2

∂u2
(t, u)y1(t, u)

2 +
∂F2

∂u
(t, u)y2(t, u)

)
dt

+

∫ T

0

∂2F1

∂u2
(t, u)y1(t, u)⊙ y2(t, u) dt+

∫ T

0

(
∂3F1

∂u3
(t, u)y1(t, u)

3 +
∂F1

∂u
(t, u)y3(t, u)

)
dt

G5(u) =

∫ T

0

(
F5(t, u) +

∂F4

∂u
(t, u)y1(t, u)

)
dt

+

∫ T

0

(
∂2F3

∂u2
(t, u)y1(t, u)

2 +
∂F3

∂u
(t, u)y2(t, u) +

∂2F2

∂u2
(t, u)y1(t, u)⊙ y2(t, u)

)
dt

+

∫ T

0

(
∂3F2

∂u3
(t, u)y1(t, u)

3 +
∂F2

∂u
(t, u)y3(t, u) +

∂2F1

∂u2
(t, z)y1(t, u)⊙ y3(t, z)

)
dt

+

∫ T

0

∂2F1

∂u2
(t, u)y2(t, u)

2 dt+

∫ T

0

∂3F1

∂u3
(t, u)y1(t, u)

2 ⊙ y2(t, u) dt

+

∫ T

0

(
∂4F1

∂x4
(t, u)y1(t, u)

4 +
∂F1

∂u
(t, u)y4(t, u)

)
dt ,

where

y1(t, u) =

∫ s

0
F1(s, u) ds

y2(t, u) =

∫ s

0
F2(s, u) +

∂F1

∂u
(s, u)y1(s, u) ds

y3(t, u) =

∫ s

0

(
F3(s, u) +

∂F2

∂u
(s, u)y1(t, z) +

∂2F1

∂u2
(s, u)y1(s, u)

2 +
∂F1

∂u
(s, u)y2(s, u)

)
ds

y4(t, u) =

∫ s

0

(
F4(s, u) +

∂F3

∂x
(s, u)y1(s, u)

)
ds+

∫ s

0

(
∂2F2

∂u2
(s, u)y1(s, u)

2 +
∂F2

∂u
(s, u)y2(s, u)

)
ds

+

∫ s

0

∂2F1

∂u2
(s, u)y1(s, u)⊙ y2(s, u) ds+

∫ s

0

(
∂3F1

∂u3
(s, u)y1(s, u)

3 +
∂F1

∂u
(s, u)y3(s, u)

)
ds

y5(t, u) =

∫ t

0

(
F5(s, u) +

∂F4

∂u
(s, u)y1(s, u)

)
ds

+

∫ t

0

(
∂2F3

∂u2
(s, u)y1(s, u)

2 +
∂F3

∂u
(s, u)y2(s, u) +

∂2F2

∂u2
(s, u)y1(s, u)⊙ y2(s, u)

)
ds

+

∫ t

0

(
∂3F2

∂u3
(s, u)y1(s, u)

3 +
∂F2

∂u
(s, u)y3(s, u) +

∂2F1

∂x2
(s, u)y1(s, u)⊙ y3(s, z)

)
ds

+

∫ t

0

∂2F1

∂u2
(s, u)y2(s, u)

2 ds+ yt
∂3F1

∂u3
(s, u)y1(s, u)

2 ⊙ y2(s, u) ds

+ 5

∫ t

0

(
∂4F1

∂u4
(s, u)y1(s, u)

4 +
∂F1

∂u
(s, u)y4(s, u)

)
ds .
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(ii) For the case of F0 ̸≡ 0, we have

G0(u) =

∫ T

0
F0(t, u) dt

G1(u) =

∫ T

0
F1(t, u) +

∂F0

∂u
(t, u)y1(t, u) dt

G2(u) =

∫ T

0

(
F2(t, u) +

∂F1

∂u
(t, u)y1(t, u) +

∂2F0

∂u2
(t, u)y1(t, u)

2 +
∂F0

∂u
(t, u)y2(t, u)

)
dt

G3(u) =

∫ T

0

(
F3(t, u) +

∂F2

∂u
(t, u)y1(t, u) +

∂2F1

∂u2
(t, u)y1(t, u)

2 +
∂F1

∂u
(t, u)y2(t, u)

)
dt

+

∫ T

0

(
∂2F0

∂u2
(t, u)y1(t, u)⊙ y2(t, u) +

∂3F0

∂u3
(t, u)y1(t, u)

3 +
∂F0

∂u
(t, u)y3(t, u)

)
dt

G4(u) =

∫ T

0

(
F4(t, u) +

∂F3

∂u
(t, u)y1(t, u)

)
dt

+

∫ T

0

(
∂2F2

∂u2
(t, u)y1(t, u)

2 +
∂F2

∂u
(t, u)y2(t, u)

)
dt

+

∫ T

0

∂2F1

∂x2
(t, z)y1(t, z)⊙ y2(t, z)dt

+

∫ T

0

(
∂3F1

∂u3
(t, u)y1(t, u)

3 +
∂F1

∂u
(t, u)y3(t, u) +

∂2F0

∂u2
(t, u)y1(t, u)⊙ y3(t, u)

)
dt

+

∫ T

0

∂2F0

∂u2
(t, u)y2(t, u)

2 dt+

∫ T

0

∂3F0

∂u3
(t, u)y1(t, u)

2 ⊙ y2(t, u) dt

+

∫ T

0

(
∂4F0

∂u4
(t, u)y1(t, u)

4 +
∂F0

∂u
(t, u)y4(t, u)

)
dt ,

where

y1(t, u) =

∫ s

0
F1(s, u) +

∂F0

∂x
(s, u)y1(s, u) dt

y2(t, u) =

∫ s

0

(
2F2(s, u) +

∂F1

∂u
(s, u)y1(s, u) +

∂2F0

∂u2
(s, u)y1(s, u)

2 +
∂F0

∂u
(s, u)y2(s, u)

)
dt

y3(t, u) =

∫ s

0

(
F3(s, u) +

∂F2

∂u
(s, u)y1(s, u) +

∂2F1

∂u2
(s, u)y1(s, u)

2 +
∂F1

∂u
(s, u)y2(s, u)

)
dt

+

∫ s

0

(
∂2F0

∂u2
(s, u)y1(s, u)⊙ y2(s, u) +

∂3F0

∂u3
(s, u)y1(s, u)

3 +
∂F0

∂u
(s, u)y3(s, u)

)
dt
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y4(t, u) =

∫ s

0

(
F4(s, u) +

∂F3

∂u
(s, u)y1(s, u)

)
dt

+

∫ s

0

(
∂2F2

∂u2
(s, u)y1(s, u)

2 +
∂F2

∂u
(s, u)y2(s, u)

)
dt

+

∫ s

0

∂2F1

∂u2
(s, u)y1(s, u)⊙ y2(s, u) dt

+

∫ s

0

(
∂3F1

∂u3
(s, u)y1(s, u)

3 +
∂F1

∂u
(s, u)y3(s, u) +

∂2F0

∂u2
(s, u)y1(s, u)⊙ y3(s, u)

)
dt

+

∫ t

0

∂2F0

∂u2
(s, u)y2(s, u)

2 dt+

∫ t

0

∂3F0

∂u3
(s, u)y1(s, u)

2 ⊙ y2(s, u) dt

+

∫ t

0

(
∂4F0

∂u4
(s, u)y1(s, u)

4 +
∂F0

∂u
(s, u)y4(s, u)

)
dt .

Recall the concerned example system (29), one has{
F1(t, u) = u

(
β1
1,2 + β2

1,1

)
sin t cos t+ u

(
−β1

1,1 + β2
1,2

)
(sin t)2 + uβ1

1,1 ,

G1(u) = πu
(
β1
1,1 + β2

1,2

)
.

It is observed that the 1st component G1(u) has no positive critical points, and thus, provides no
information about the bifurcation solutions once adding perturbations. Further, it is necessary to
compute the higher-order components. From Procedure 4-12, we have

G2(u) =
πu

2

(
π(β1

1,1)
2 + 2πβ1

1,1β
2
1,2 + π(β2

1,2)
2 + β1

1,1β
1
1,2 − β1

1,1β
2
1,1 + β1

1,2β
2
1,2 − β2

1,1β
2
1,2

+ 2β1
2,1 + 2β2

2,2

)
G3(u) =

1

4
πu
[(
β1
1,1 + 3β1

1,6 + β1
1,8 + β1,7 + 3β2

1,9

)
u2 + 4

(
β1
3,1 + β2

3,2

)]
with β2

2,2 = −β1
2,1

G4(u) =
1

4
πu
[
C1u

2 + 4
(
β1
4,1 + β2

4,2

)]
with β2

1,7 ← β1
1,1 + 3β1

1,6 + β1
1,8 + β1,7 + 3β2

1,9β
2
1,7 and β2

3,2 ← −β1
3,1 − β2

3,2 + β2
3,2

G5(u) =
1

4
πu
[(
2β1

1,1 + 2β1
1,6 + β1

1,8 + β2
1,9

)
u4 + C2u

2 + 4
(
β1
5,1 + β2

5,2

)]
with β2

2,7 ← −C1 + β2
2,7 and β2

4,2 ← −β1
3,1 − β2

3,2 + β2
4,2 ,
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where

C1 = 4β1
1,1β

1
1,2 + 2β1

1,1β
1
1,7 + 2β1

1,1β
2
1,8 + β1

1,2β
1
1,8 + 3β1

1,2β
2
1,9 + β1

1,3β
1
1,4 − 2β1

1,3β
2
1,3 + β1

1,4β
1
1,5

+ 2β1
1,5β

2
1,5 + β1

1,8β
2
1,1 + 3β1

1,1β
2
1,9 − β2

1,3β
2
1,4 − β2

1,4β
2
1,5 + 4β1

2,1 + 3β1
2,6 + β1

2,8 + β2
2,7 + 3β2

2,9

C2 = 4β1
1,1(β

1
1,2)

2 + 2β1
1,1β

1
1,2β

1
1,7 + 2β1

1,1β
1
1,2β

2
1,8 + 2β1

1,1(β
1
1,3)

2 + 2β1
1,1β

1
1,3β

1
1,5 − β1

1,1β
1
1,3β

2
1,4

+ β1
1,1(β

1
1,4)

2 − β1
1,1β

1
1,4β

2
1,3 + β1

1,1β
1
1,4β

2
1,5 + β1

1,1β
1
1,5β

2
1,4 − 2β1

1,1β
2
1,3β

2
1,5 − β1

1,1(β
2
1,4)

2

− 2β1
1,1(β

2
1,5)

2 + (β1)21,2β
1
1,8 + 3(β1)21,2β

2
1,9 + β1

1,2β
1
1,3β

1
1,4 + 2β1

1,2β
1
1,4β

1
1,5 + 4β1

1,2β
1
1,5β

2
1,5

+ β1
1,2β

1
1,8β

2
1,1 + 3β1

1,2β
2
1,1β

2
1,9 − β1

1,2β
2
1,4β

2
1,5 + 2β1

1,3β
2
1,1β

2
1,3 + β1

1,4β
1
1,5β

2
1,1 + 2β1

1,5β
2
1,1β

2
1,5

+ β2
1,1β

2
1,3β

2
1,4 + 4β1

1,1β
1
2,2 + 2β1

1,1β
1
2,7 + 2β1

1,1β
2
2,8 + 4β1

1,2β
1
2,1 + β1

1,2β
1
2,8 + 3β1

1,2β
2
2,9

+ β1
1,3β

1
2,4 − 2β1

1,3β
2
2,3 + β1

1,4β
1
2,3 + β1

1,4β
1
2,5 + β1

1,5β
1
2,4 + 2β1

1,5β
2
2,5 + 2β1

1,7β
1
2,1 + β1

1,8β
1
2,2

+ β1
1,8β

2
2,1 + 2β1

2,1β
2
1,8 + 3β1

2,2β
2
1,9 − 2β1

2,3β
2
1,3 + 2β1

2,5β
2
1,5 + β1

2,8β
2
1,1 + 3β2

1,1β
2
2,9 − β2

1,3β
2
2,4

− β2
1,4β

2
2,3 − β2

1,4β
2
2,5 − β2

1,5β
2
2,4 + 3β2

1,9β
2
2,1 + 4β1

3,1 + 3β1
3,6 + β1

3,8 + β2
3,7 + 3β2

3,9 .

It is observed that the 5th component G5(u) has at most three positive critical points, which provides
support for the existence of the upper bound of H(n) in Corollary 7. This completes the proof. □

Appendix J. About the Post-synaptic Computations according to Eq. (36)

Table 2 has listed the post-synaptic computations of conventional surrogate gradients (Li et al., 2021),
SLAYER (Shrestha and Orchard, 2018), and our proposed StocSNN, and Figure 6 illustrates the
feed-forward and back-propagation computations.

The post-synaptic derivative of Eq. (34) indicates the remediation of the discontinuous and
non-differential firing phase led by deterministic feed-forward computations. This derivative, i.e., the
derivative of firing function Heaviside(u− ureset), is identified as a Dirac-delta function 4,

Heaviside(x) =

{
1 , x ≥ 0 ,

0 , x < 0 ,
and Heaviside′(x) =

{
∞ , x = 0 ,

0 , x ̸= 0 ,

which is zero almost everywhere except for the threshold that grows to infinity, as shown by the red
solid curve in Figure 6(b)(d). As a consequence, the gradient descent

Wl ←Wl − η
∂E

∂Wl

substituted into Eq. (61) either freezes the connection weights or updates the connection weights to
infinity. In conventional SNNs training algorithms, the post-synaptic derivative is approximated by a
smooth surrogate function, such as the rectangular, triangular, and hyperbolic tangent functions (Li
et al., 2021). It is evident that using surrogate gradients inevitably results in a gap between the
feed-forward and back-propagation procedures. Thus, surrogate gradients are asymptotic and biased
calculators.

4. Or equally, the spike sequence is formulated by Ij(t) =
∑

firing δ
(
t− tfiring

j

)
, where tfiring

j is the spike time of the j th

input and δ(t) is a corresponding Dirac-delta function.
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SLAYER (Shrestha and Orchard, 2018) seeks an alternative gradient to circumvent this issue. As
shown in Figure 6(c)(d), SLAYER utilizes a probability density function to indicate the change of a
spiking neuron state such that the proposed probability density function can estimate the expected
post-synaptic derivative (also known as surrogate gradient). It has been proved that using probability
density functions leads to an asymptotic but unbiased estimator.

Finishing the proof of Theorem 8. Here, we leverage the post-synaptic derivative from the
perspective of energy back-propagation. It is observed that the pre-synapse receives fagg(s

(l−1)(t))
at time t, and then the post-synapse fires spikes according to the excitation probability p(u). In the
whole procedure, the concerned neuron receives the pre-synaptic signals fagg(s

(l−1)(t)), consumes
the integration operations, and fires the output according to p(u); the former two correspond to the
pre-synaptic derivative and the latter results in the post-synaptic derivative. Further, we obtain the
energy rate as

∂p(u)ufiring

∂u(t)
=

∂p(u)

∂u(t)
ufiring .

Inspired by this recognition, we can replace the binary spike s(t) in Eq. (34) by the corresponding
excitation probability p(u), thus approximating the post-synaptic derivatives using the element-wise
gradients, that is,

∂s(l)(t)

∂u(l)(t)
← ∂p(l)(t)

∂u(l)(t)
.

From the perspective of random algorithms, Eq. (36) derives a non-asymptotic and unbiased es-
timator. In Figure 6(e), the stochastic spiking neuron randomly generates spikes when the membrane
potential enter in the red region (possible firing region). Thus, the post-synaptic derivative becomes a
pseudo-step function that consists of a Dirac delta function on [0, uθ] and an expectation derivative
on [uθ, ufiring], as shown by the red dotted curve in Figure 6(f). Thus, our proposed derivative is
non-asymptotic as uθ → 0.

• There is only a small gap between the feed-forward and back-propagation computations. This
gap is led by the Dirac delta function defined on [0, uθ] and controlled by pθ (corresponding to
uθ and as uθ → 0).

• Since s(l) is sampled from the Bernoulli distribution with random variable p(l), it holds
E[s(l)] = p(l). Let δµ be a small perturbation that affects the membrane potentials so that
|u− ufiring| ≤ uθ leads to a change of the spiking neuron state. Thus, we have

E

[
δs(l)(t)

δu(l)(t)

]
=

δp(l)(t)

δu(l)(t)
,

where {
δs(l)(t) = s(l)(t+ δt)− s(l)(t) ,

δp(l)(t) = p(l)(t+ δt)− p(l)(t) ,

and δu(l)(t)→ 0 as δt→ 0. Thus, we have

E

[
∂s(l)(t)

∂u(l)(t)

]
= E

[
lim
uθ→0
δt→0

δs(l)

δu(l)

]
= lim

uθ→0
δt→0

δp(l)(t)

δu(l)(t)
=

∂p(l)(t)

∂u(l)(t)
,

which implies that Eq. (36) is an unbiased estimator for the post-synaptic derivative.
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This completes the proof. □

Appendix K. Full Proofs of Theorem 9 and Theorem 10

The proof idea of these two theorems is intuitive, which has its spring in the timing representation
of the stochastic spiking neuron model. There exists an inverse transformation ϕ between the spike
sequences X ∈ {0, 1}M×T and its timing sequences TX(R+)M×T . Thus, the universal approxima-
tion issue presented in Theorem 9 is equivalent to a new problem that collects expressive functions f
to approximate g′ ∈ Cr(K,R). Moreover, the approximation issue presented in Theorem 10 equals
to finding an apposite function g′ such that

sup
ϕ
∥f(ϕ(X))− g′(ϕ(X))∥2 < ϵ

with arbitrarily high possibility. Here, we define an element distinctness function gEDF : (R+)M →
{0, 1} by

gEDF(TX) = (g1, . . . , gM ) , gk =


1 , if Tki = Tkj for i ̸= j ;

0 , if |Tki −Tkj | ≥ c∆t for i ̸= j ;

pθ, otherwise ,

for k ∈ [M ] ,

where c is a scaling constant and ∆t is a timing threshold. It is obvious that gEDF is an apposite
conversion between the rate-based and timing-based encoding, mentioned in Section 3. Thus,
the universal approximation issue in Theorem 9 is equivalent to another problem of universally
approximating the timing sequences TX ∈ (R+)M×T , that is, gEDF is a component of ϕ. Therefore,
it is obvious that approximating g′ is a sub-problem of proving Theorem 10 when one regards g′ as a
component of gEDF : (R+)M×T → {0, 1}M .

Finishing the proof of Theorem 9. Altering to the line of the thought above, we can prove that
gEDF is an invertible conversion between X ∈ {0, 1}M×T and its timing sequences TX(R+)M×T .
Thus, given an apposite p(u), we can obtain that the set of functions expressed by stochastic spiking
neurons is dense in Cr(K,R) where K is a bounded set of RM . Besides, Cr(K,R) is dense in
C0(K,R). According to the transitivity of dense operations, we can finish this proof. □

Finishing the proof of Theorem 10. The proposed stochastic spike neuron model, according to
Eq. (31), can easily approximate the function expressive of the conventional one by regulating pθ. In
other words, the whole integration-and-firing process degenerates into the conventional discrete-LIF
model when pθ → 0. Intuitively, the stochastic spiking neuron regulated by the excitation probability
threshold pθ maintains a stronger approximation ability than the conventional ones.

Part (i) of Theorem 10 is self-evident. Notice that pθ indicates a possibility threshold detailed in
Section 5. Hence, such a function gEDF can be approximated well by a SNN with only one hidden
stochastic spiking neuron since the input spike arrives with a temporal distance between 0 and c.

Part (ii) of Theorem 10 follows the results of (Maass, 1996).
For part (iii) of Theorem 10, we consider some set KM−1 ⊆ R+ of the cardinality M − 1. Let

c > 0 be sufficiently large to ensure that elements in set c ·KM−1 have pairwise distances greater
than 2. Let K∗

M−1 be a set with cardinality M − 1, in which the pairwise distance of elements are
greater than max(c ·KM−1) + 2. So it suffices to prove that the concerned artificial neural network
can partition arbitrary M elements of K∗

M−1 ∪ c ·KM−1 differently. Let fANN denote the concerned
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artificial neural network with (M − 6)/2 hidden sigmoidal neurons, and f c
ANN is a variant of fANN

where all weights connects to input variables are multiplied with c. Hence, when one assigns a
suitable set of M − 1 pairwise elements from K∗

M−1 ∪ c ·KM−1 to the last M − 1 input variables,
f c

ANN can approximate any function from KM−1 to {0, 1}. In order to shatter arbitrary set KM−1

using fANN, there are at least m+ 1 anchor points, that is, hidden spiking neurons. From the results
of (Sontag, 1997) that yield an upper bound of 2(m+ 1) + 1 for the maximal number M ∈ N+ such
that every set of M different inputs can be shattered by an artificial neural network with sigmoidal
activation of m hidden neurons. Thus, we have

M − 1 ≤ 2((m+ 1) + 1) + 1 , or equally m ≥ (M − 6)/2 ,

which completes this proof. □

Remark: Due to the generality of Sontag’s results (Sontag, 1997), part (iii) of Theorem 10 (i.e., the
lower bound of (M − 6)/2) is also valid for all sigmoid-like activations, even if fANN employs a
Heaviside-like function besides sigmoidal activations, which coincides with part (ii) of Theorem 10.

Appendix L. Full Proof for Theorem 11

Here, we complete the proof of Theorem 11. Provided Eq. (41), the general Rademacher complexity
is relevant to not only training samples but also the excitation probability threshold.

Motivated by the techniques given by Bartlett and Mendelson (Bartlett and Mendelson, 2002), it
obviously holds

E(f) ≤ Ê(f) + sup
w∈W

[
E(f)− Ê(f)

]
︸ ︷︷ ︸

R(Sn,P)

.

Let S′
n denote the sample set that the ith sample (Xi, yi) is replaced by (X′

i, y
′
i), and correspondingly

P′ is the possibility matrix that the ith row vector pi is replaced by p′
i, for i ∈ [n]. For the loss

function L bounded by C > 0, that is, |L | ≤ C, one has

{
|R(Sn,P)−R(S′

n,P)| ≤ C/n ,

|R(Sn,P)−R(Sn,P
′)| ≤ C/n .

From McDiarmid’s inequality (McDiarmid, 1989), with probability at least 1− δ, the following holds

R(Sn,P) ≤ ESn∈D,P [R(Sn,P)] + C

√
ln(2/δ)

n
.

It is observed that

R(Sn,P) = sup
w∈W

ES̃n∈D,P̃

[
Ê(f ; S̃n, P̃)− Ê(f ;Sn,P)

]
,
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where S̃n is another collection drawn from D as well as P̃. Thus, we have

ESn∈D,P [R(Sn,P)] ≤ E
[
sup
w∈W

[
Ê(f ; S̃n, P̃)− Ê(f ;Sn,P)

]]
= E

[
sup
w∈W

1

n

n∑
i=1

[
h(w, X̃i, ỹi, p̃i)− h(w,Xi, yi,pi)

]]

≤ 2E

[
sup
w∈W

1

n

n∑
i=1

ϵih(w,Xi, yi,pi)

]
= 2Rn(L ◦ FW) ,

which completes the proof of Eq. (40a). By applying McDiarmid’s inequality to R̂n(L ◦FW , Sn,P),
we have

Rn(L ◦ FW) ≤ R̂n(L ◦ FW , Sn,P) + C

√
ln(2/δ)

n
,

which completes the proof of Eq. (40b). Therefore, this theorem follows as desired. □

Appendix M. Full Proof for Theorem 12

Here, we are going to complete the proof of Theorem 12. Before that 5, we introduce a probability
indicate as follows

sj(t) ∼ Bernoulli(pj(t))j with pj(t) ∼ Eq. (31) .

Thus, we can convert s(l)(t) of Eq. (32) into

sl(t) = I l(t) =
(
I l
1(t), · · · , I l

dl
(t)
)⊤

.

We begin the proof of Theorem 12 with several useful lemmas as follows.

Lemma 21 ((Ledoux and Talagrand, 1991)) Let F denote a bounded function space from X to Y ,
and ϕ : R×R→ R is a Lipschitz function with constant Cn > 0 and ϕ(0) = 0. For (Xi, yi) ∈ X×Y
(i ∈ [n]), we have

Eϵi,i∈[n]

[
sup
f∈F

1

n

n∑
i=1

ϵiϕ(f(Xi), yi)

]
≤ Cn Eϵi,i∈[n]

[
sup
f∈F

1

n

n∑
i=1

ϵif(Xi)

]
.

Lemma 22 ((Gao and Zhou, 2016)) Suppose that L (·, y) is a Lipschitz function with constant
Cn > 0, then we have

Rn(L ◦ FW) ≤ Cn Rn(FW) .

Lemma 22 provides an intuitive way for estimating Rn(L ◦ FW) from Rn(FW).

5. For convenience, we here omit the superscripts and subscripts as possible.
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Lemma 23 Let α, α′, and α′′ be three L-dimensional indicator vectors, of which the l-th element
αl, α′

l, and α′′
l are drawn i.i.d. from Bernoulli distribution Bernoulli(p(l)) for l ∈ [L]. Then for

X ∈ X , one has
Eα [∥X⊙α∥2] ≤ p

1/2
0 · ∥X∥2 ,

Eα,α′
[
∥X⊙α⊙α′∥2

]
≤ p0 · ∥X∥2 ,

Eα,α′

∏
l∈[L]

αl

∥∥X⊙α′∥∥
2

 ≤ p
(L+1)/2
0 ∥X∥2 ,

Eα,α′,α′′

∏
l∈[L]

αl

∥∥X⊙α′ ⊙α′′∥∥ ≤ p
(L+2)/2
0 ∥X∥2 ,

where p0 = maxl∈[L]{p(l)}.

Finishing the proof of Theorem 12. We first show the estimation results for one-hidden-layer
StocSNN, i.e.,

Rone
n (FW) ≤ CnCXC2

w pmax√
n

,

if ureset = 0, ∥w∥ ≤ ∥W∥ ≤ Cw for W ∈ W , and ∥x∥ ≤ ∥X∥ ≤ CX for X ∈ X , where Fone
W

denotes the function space of StocSNN with one hidden layer. For i ∈ [n], we define an element-wise
vector ∆u as follows

∆u = (1− s)⊙ (τu+wx) + s · ureset ,

where x, u, and s is the input, membrane, and spike vectors, respectively. According to ureset = 0
and s(i) ∈ {0, 1}m that is drawn i.i.d. from Bernoulli(p(i)) where m denotes the number of hidden
spiking neurons and the superscript i denotes the ith instance, we have

R̂one
n (L ◦ FW , Sn,P) =

1

n
Eϵi,i∈[n]

[
sup
w∈W

〈
w,

n∑
i=1

ϵis
(i) ⊙∆u(i)

〉]

≤ CwEϵi,i∈[n]

[
sup
w∈W

〈
w

∥w∥1
,
1

n

n∑
i=1

ϵis
(i) ⊙∆u(i)

〉]

≤ CwEϵi,i∈[n]

[
sup
w∈W

〈
w

∥w∥1
,
1

n

n∑
i=1

ϵis
(i) ⊙

(
1− s(i)

)
⊙
(
τu+wx(i)

)〉]

≤ CnCw

n
Eϵi,i∈[n]

[
sup
w∈W

n∑
i=1

ϵi

〈
w ⊙ s(i),x(i) ⊙ s(i)

〉]
,

(60)
where 0 ≤ Cn, Cw and the last inequality hold from (Gao and Zhou, 2016, Lemma 1) and Lemma 21.
Since E[ϵiϵk] = 0 for i ̸= k and E[ϵiϵi] = 1 for i ∈ [n], we have

Eϵi,i∈[n]

[
sup
w∈W

n∑
i=1

ϵi

〈
w ⊙ s(i),x(i) ⊙ s(i)

〉]
≤ Cw

(
n∑

i=1

p
(i)
max

〈
x(i) ⊙ s(i),x(i) ⊙ s(i)

〉)1/2

,

(61)
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where p
(i)
max = 1−max{p(i), pθ} denotes the possibility threshold of the ith instance. According to

Lemma 23, we have

R̂one
n (L ◦ FW , Sn,P) ≤ CnCw

n
Cw

(
n∑

i=1

pi

〈
x(i) ⊙ s(i),x(i) ⊙ s(i)

〉)1/2

≤ CnCXC2
w pmax√
n

,

where pmax = maxi∈[n]{p
(i)
max}. Notice that the above formula holds according to the sampling of

probability indicate I l
j(t). If one sets pθ = 1 (corresponding to pmax = 1), that is, any membrane

potential may generate spikes, then our bound can be relaxed to the conventional studies in artificial
neural networks (Wan et al., 2013). And pθ = 0 makes the aforementioned bound meaningless.

Next, we extend the above result to the deep StocSNN. The proof processes for single-layer and
multi-layer StocSNN is almost the same. The only difference is that R̂deep

n (L ◦ FW , Sn,P) of deep
StocSNN is unfolded layer by layer. By exploiting Eqs. (60) and (61), one has

R̂deep
n (L ◦ FW , Sn,P) ≤ CnCL

n
Eϵi,i∈[n]

[
sup
wL

n∑
i=1

ϵi

〈
wL ⊙ s(l), s(l−1) ⊙ s(l)

〉]
,

Eϵi,i∈[n]

[
sup
wl+1

n∑
i=1

ϵi

〈
w(l+1) ⊙ s(l+1,i), s(l,i) ⊙ s(l+1,i)

〉]

≤ CnCl+1Eϵi,i∈[n]

[
sup
wl

n∑
i=1

ϵi p
(l+1,i)
max

〈
w(l) ⊙ s(l,i), s(l−1,i) ⊙ s(l,i)

〉]

≤ CnCl+1 max
i
{p(l+1,i)

max } Eϵi,i∈[n]

[
sup
wl

n∑
i=1

ϵi

〈
wl ⊙ s(l,i), s(l−1,i) ⊙ s(l,i)

〉]
,

Eϵi,i∈[n]

[
sup
w1

n∑
i=1

ϵi

〈
w1 ⊙ s(1,i),x⊙ s(1,i)

〉]
≤ C1

(
n∑

i=1

p
(1,i)
max

〈
x⊙ s(1,i),x⊙ s(1,i)

〉)1/2

,

where p
(l,i)
max = 1 −max{p(l,i), pθ} in which the superscripts l and i denote the layer and instance

index, respectively. Provided pmax = maxi∈[n],l∈[L]{p
(l,i)
max}, this proof follows as desired. □
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